
SSH - Secure SHell

Lecture 23

Slides prepared by Joseph Zhaojun Wu
Revised by Cunsheng Ding in May 2022

Outline

l Introduction
l Protocol details
l Applications
l References

Introduction

What is SSH?

• A set of standards and associated protocols
to establish a secure channel between two
computers.

• Covers authentication, data confidentiality,
and data integrity.

• Originally, a replacement of insecure
applications like r-commands (i.e., Berkeley
remote commands, e.g., rlogin, rsh, rcp).

Why SSH?

• Drawbacks in some traditional applications:
– Authentication is based on IP address
– Authentication is based on reusable password
– Data is transmitted in clear text
– X protocol is vulnerable to attack
– Intermediate hosts can hijack sessions

For X protocol, see http://en.wikipedia.org/wiki/X_Window_System

Features of SSH

l Secure remote logins (ssh client)
l Secure remote command execution
l Secure file transfer and backup

(sftp/rsync/scp)
l Public-key generation and agent for taking

care of your private key
l Port forwarding and tunnelling (x11

forwarding and tunnelling using SSH)

Brief History

• Tatu Ylönen, a researcher at Helsinki University
of Technology, Finland, developed the first
version of SSH in 1995.

• Very popular, 20K users in 50 countries in the
first year.

• Ylönen found SSH Communications Security
(www.ssh.com) to maintain, develop and
commercialize SSH, in Dec. 1995.

• Released SSH2 in 1998 based on updated SSH-
2 protocol (but not compatible to SSH-1)

Brief History (cont.)

l 1999, Björn Grönvall developed OSSH based on
the last open source release (1.2.12) of the
original ssh program.

l “OpenBSD” then extended Grönvall's work,
launched the OpenSSH project (www.openssh.org),
mainly done by Markus Friedl.

l Ported to Linux, Solaris, AIX, Mac OS X,
Windows (cygwin) and etc.

l Currently, OpenSSH is the single most popular
SSH implementation in most of operating
systems.

Remark: The OpenBSD project produces a FREE, multi-platform UNIX-like operating system.

http://www.openssh.org/

SSH Implementations

Name UNIX WIN MAC Clients Server FREE

SSH.COM X X X X

OpenSSH X X X X X

F-Secure SSH X X X X X

PuTTY X X X

SecureCRT, SecureFX X X

VShell X X

TeraTerm X X X

MindTerm X X X X X

MacSSH X X X

SSH.com & OpenSSH

• IPSec is a lower level (IP-based) security solution
than SSH. More fundamental but really expensive.
SSH is quicker and easier to deploy.

• SSL or TSL is TCP-based and “always” used in WEB
applications.

• There are some SSL-enhanced Telnet/FTP
applications in some single hacked or patched
versions. SSH is a more integrated toolkit designed
just for security.

IPSec & SSL vs. SSH

Protocol Details

• SSH protocol is based on a client/server
architecture
– A ssh server running on the server side is listening on

the 22 TCP port for incoming connection
joseph@hlt029:~> sudo netstat --tcp --listening --program
tcp6 0 0 *:ssh *:* LISTEN 3075/sshd

– A client who wants to connect to a remote host will
execute the ssh command

joseph@PeT43:~> ssh hlt029

SSH Architecture

Remark: Port 22/TCP,UDP: for SSH (Secure Shell) - used for secure logins,
file transfers (scp, sftp) and port forwarding

http://en.wikipedia.org/wiki/Secure_shell
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/SSH_file_transfer_protocol

SSH-2 Protocol has a very clean 3-layer internal
architecture (RFC 4251):
– Transport Layer (RFC 4253):

Initial key exchange, server authentication, data
confidentiality, data integrity, compression (optional), and
key re-exchange.

– User Authentication Layer (RFC 4252):
Client authentication, provide various authentication
methods.

– Connection Layer (RFC 4254):
Defines the logical channels and the requests to handle the
services like: secure interactive shell session, TCP port
forwarding and X11 forwarding.

3 Layers

3 Layers

Outline

l Protocol Details
- Transport Layer
- User Authentication Layer
- Connection Layer

• Fundamental building block of SSH.

• Providing services like initial connection,
record protocol, server authentication, and
basic encryption and integrity.

• After that, the client has a single, secure,
full duplex stream to an authenticated
server.

Transport Layer

• Example:

joseph@HLT029:~ > ssh -vv joseph@freebsd
OpenSSH_4.3p2 Debian-6, OpenSSL 0.9.8c 05 Sep 2006
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to freebsd [143.89.152.72] port 22.
debug1: Connection established.

Connection

• Protocol version selection:
– Exchange a message in a form:
SSH-protoversion-softwareversion SP comments CR LF

– Example:
debug1: Remote protocol version 2.0, remote software version OpenSSH_4.2p1

FreeBSD-20050903
debug1: match: OpenSSH_4.2p1 FreeBSD-20050903 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_4.3p2 Debian-6

– after that, both sides switch to a nontextual, record-
oriented protocol, binary packet protocol (the basis of
SSH transport).

Version Selection

• Key exchange algorithms:
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-hellman-group14-sha1,diffie-

hellman-group1-sha1

• SSH host key types:
debug2: kex_parse_kexinit: ssh-rsa,ssh-dss,null
[NULL is for Kerberos authentication]

• Data encryption ciphers:
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-

cbc,arcfour128,arcfour256,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-
ctr,aes192-ctr,aes256-ctr

• Data integrity algorithms:
debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-

ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96

l Data compression algorithms (optional):
debug2: kex_parse_kexinit: none,zlib@openssh.com,zlib

Parameter Negotiation: Offers from the Client

debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-hellman-group14-
sha1,diffie-hellman-group1-sha1

debug2: kex_parse_kexinit: ssh-dss
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-

cbc,arcfour128,arcfour256,arcfour,aes192-cbc,aes256-cbc,rijndael-
cbc@lysator.liu.se,aes128-ctr,aes192-ctr,aes256-ctr

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib@openssh.com

Parameter Negotiation:
Messages back from the server:

• After the para. negotiation, the real master key
exchange is ready to go (details are omitted):

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug2: dh_gen_key: priv key bits set: 132/256
debug2: bits set: 513/1024
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

• Server authentication:
server replied its public host key
debug1: Host 'freebsd' is known and matches the DSA host key.
debug1: Found key in /home/joseph/.ssh/known_hosts:51
debug2: bits set: 502/1024
debug1: ssh_dss_verify: signature correct

Key Exchange & Server Auth.

• Based on the shared master key, derives data encryption
key and data integrity key, in both sides (details are
omitted):

debug2: kex_derive_keys
debug2: set_newkeys: mode 1 [MODE_OUT send out]
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug2: set_newkeys: mode 0 [MODE_IN receive in]
recved the new keys from server side
debug1: SSH2_MSG_NEWKEYS received

• Service request: (the end of key exchange)
debug1: SSH2_MSG_SERVICE_REQUEST sent
debug2: service_accept: ssh-userauth
debug1: SSH2_MSG_SERVICE_ACCEPT received

Derive other Keys

• The Key Exchange actually produces two values:
• a shared secret K and an exchange hash value H (details are

omitted).
• The unique H is used as the Session ID.
• Data flow directions client->server and server-

>client are independent, may use different
algorithms (i.e. 3DES+SHA1 and Blowfish+MD5)

• But in practice, it is recommended that the same cipher and
same hash function are used for both directions.

• If compression is enabled, the data is first
compressed and only then encrypted

• How to obtain server's host key during the first
log in?

Remarks and Question

• Two different trust models:
– the client maintain a local database that associates each host

name and corresponding public host key.
– get the host key from a trusted 3rd party (Certification

Authority)
• Another Option: host key association is NOT checked

for the first login.
joseph@freebsd:~ > ssh hlt033
The authenticity of host 'hlt033.cse.ust.hk (143.89.152.142)' can't be established.
DSA key fingerprint is 9b:1f:73:ff:d1:e1:89:91:35:97:11:20:f2:ac:f9:72.
Are you sure you want to continue connecting (yes/no)?

How to get host public key the 1st time?

• Key Exchange:
– diffie-hellman-group1-sha1 [Required]
– diffie-hellman-group14-sha1 [Required]

• Data Encryption:
– 3des-cbc [Required]
– AES128-cbc [Recommended]

• Data Integrity:
– hmac-sha1 [Required],
– hmac-sha1-96 [Recommended]

• Public Key:
– ssh-dss [Required]
– ssh-rsa [Recommended]

Required/Recommended Algorithm

Outline

l Protocol Details
- Transport Layer
- User Authentication Layer
- Connection Layer

• Runs atop of transport layer
• Relies on data privacy and integrity,

provided by the transport layer
• Service ID: “ssh-userauth”
• Has access to the shared secret Session ID

from transport layer
• Many authentication methods are available

and they are negotiable

User Authentication Layer (1)

• Client requests service “ssh-userauth”
• Server responds with the list of available

authentication methods. More than one
authentication may be required

• Methods:
– Public key [Required]
– Password
– Host-based

User Authentication Layer (2)

• Authentication Request is driven by the client and
has the following parts:
– user name
– service name
– method name

• Authentication Response:
– SUCCESS: authentication done.
– FAILURE: return a list of authentication methods that

can continue

• Example: next page.

Authent. Request & Response

• User Authentication Example:
Server side:
debug1: userauth-request for user joseph service ssh-connection method none
debug1: attempt 0 failures 0
Failed none for joseph from 143.89.152.138 port 60465 ssh2
Client side
debug1: Authentications that can continue: publickey,keyboard-interactive
debug1: Next authentication method: publickey [failed]
debug1: Next authentication method: keyboard-interactive
Password:
#server side:
Accepted password for joseph from 143.89.152.138 port 60465 ssh2
debug1: Entering interactive session for SSH2

Example of Client Authentication

Outline

l Protocol Details
- Transport Layer
- User Authentication Layer
- Connection Layer

• Runs over the transport layer, utilizes the
authentication layer

• Multiplexes the encrypted connection
provided by the transport layer into several
logical channels

• Channel type:
– Interactive sessions
– Remote command execution
– X11: an X11 client connection
– TCP/IP port forwarding
– ...

Connection Layer

• Channels – can be opened by either side
• To open a new channel

– Allocate a channel number
– Send a request to the other side, giving

channel type
– The other side either rejects or accepts

and returns its channel number
– Therefore a channel is identified by two

numbers

Connection Layer

• Output of the client opening a session:

debug1: Authentication succeeded (keyboard-interactive).
debug1: channel 0: new [client-session]
debug2: channel 0: send open
debug1: Entering interactive session.
debug2: channel 0: request pty-req confirm 0

Example

Applications

X11 Forwarding

Port Forwarding
Tunneling the connection to a remote IMAP server through SSH:
$ssh -L2001:localhost:143 server

IMAP (Internet Message Access Protocol) is an Internet standards-track protocol
for accessing messages (mail, bboards, news, etc).

• SCP: copying files btw. hosts by using SSH for data
transfer.

joseph@hlt029:~> scp -r mydev/* joseph@hlt030:/data/mydev

• SFTP: Secure FTP over SSH
joseph@HLT029:~ > lftp sftp://freebsd
lftp freebsd:~> user joseph
Password:
lftp joseph@freebsd:~> ls
drwxr-xr-x 5 joseph joseph 512 Dec 3 16:20 .
drwxr-xr-x 6 root wheel 512 Nov 17 04:18 ..
-rw------- 1 joseph joseph 64 Dec 3 16:20 .Xauthority
-rw------- 1 joseph joseph 4760 Dec 3 23:33 .bash_history
-rw-r--r-- 1 joseph joseph 1141 Nov 18 22:52 .bash_profile
-rw-r--r-- 1 joseph joseph 3169 Sep 19 17:42 .bashrc

SCP, and SFTP

• using “ssh-keygen” to generate a public/private RSA or
DSA key pair, with protection from a passphrase:

joseph@HLT029:~ > ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/joseph/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/joseph/.ssh/id_rsa.
Your public key has been saved in /home/joseph/.ssh/id_rsa.pub.

• adding your public key into the server(freebsd)'s
“authorized_keys” database. (~/.ssh/authorized_keys)

• connecting to the server by using public key
authentication:

joseph@HLT029:~ > ssh freebsd
Enter passphrase for key '/home/joseph/.ssh/id_rsa':

SSH Public Key Authentication

• SSH: The Secure Shell The Definitive Guide 2E
• SSH FAQ
• OPENSSH Project Official Site
• SSH Communications Security
• The Secure Shell (SSH) Protocol Architechture

https://datatracker.ietf.org/doc/html/rfc4251
• The SSH Transport Layer Protocol

https://www.rfc-editor.org/rfc/rfc4253#section-7.1

References

http://www.snailbook.com/

Acknowledgements

l OS used in experiments: GNU/Linux Debian etch and
FreeBSD 6.1

l SSH-2 Client & Server: OpenSSH 4.2 & 4.3

l Some figures used in this slides are copied from the

l book “SSH, the Secure Shell – The Definitive Guide 2nd
Edition” at Safari Books Online (Oreilly)

http://proquest.safaribooksonline.com/0596008953

