SSH - Secure SHell

Lecture 23

Slides prepared by Joseph Zhaojun Wu
Revised by Cunsheng Ding in May 2

Outline

. Introduction

« Protocol details
. Applications

. References

Introduction

What is SSH?

+ A set of standards and associated protocols
to establish a secure channel between two

computers.

+ Covers authentication, data confidentiality,
and data integrity.

* Originally, a replacement of insecure
applications like r-commands (i.e., Berkeley
remote commands, e.g., rlogin, rsh, rcp).

Why SSH?

» Drawbacks in some traditional applications:
- Authentication is based on IP address
- Authentication is based on reusable password
- Data is transmitted in clear text
- X protocol is vulnerable to attack
- Intermediate hosts can hijack sessions

For X protocol, see http://en.wikipedia.org/wiki/X _Window_System

Features of SSH

« Secure remote logins (ssh client)

. Secure remote command execution

. Secure file transfer and backup
(sftp/rsync/scp)

o Public-key generation and agent for taking
care of your private key

o Port forwarding and tunnelling (x11
forwarding and tunnelling using SSH)

Brief History

. TaT Ylonen, a researcher at Helsinki University
of Technology, Finland, developed the first
version of SSH in 1995,

» Very popular, 20K users in 50 countries in the
first year.

* Ylonen found SSH Communications Security
(www.ssh.com) To maintain, develop and
commercialize SSH, in Dec. 1995.

* Released SSH2 in 1998 based on updated SSH-
2 protocol (but not compatible to SSH-1)

Brief History (cont.)

. 1999, Bjorn Gronvall developed OSSH based on
the last open source release (1.2.12) of the
original ssh program.

. "OpenBSD" then extended Gronvall's work, AR
launched the OpenSSH project (), KL
mainly done by Markus Fried|.

« Ported to Linux, Solaris, AIX, Mac OS X,
Windows (cygwin) and etc.

o Currently, OpenSSH is the single most popular
SSH implementation in most of operating
systems.

Remark: The OpenBSD project produces a FREE, multi-platform UNIX-like operating system.

http://www.openssh.org/

SSH Implementations

Name UNIX|WIN|MAC|Clients|Server|FREE
SSH.COM X | X X X
OpenSSH X | X X X X
F-Secure SSH X | X | X X X

PuTTyY X X X
SecureCRT, SecureFX X X

VShell X X
TeraTerm X X X
MindTerm X | X | X X X
MacSSH X X X

SSH.com & OpenSSH

- default - SSH Secure Shell [{mfl| ><

” File Edit View Window Help
Hmﬁ About SSH Secure Shell ~x
|| &1 quickcon [EPRRES SSH? Secure Shell (TM)

Version: 3.2.2 (Build 269)
Product code: 27010-32<00
? 2000-2002 SSH Communications Security Corp. This

software is protected by international copyright laws. All
rights reserved. http: //www. ssh.com

This product is licensed to:

This copy of SSH Secure Shell is a non-commercial
version which does not include PKI and PKCS #11
functionality.

This non-expiring version may not be used for any
commercial purposes.

ssh? is a reqgistered trademark of SSH Communications Security Corp. in
the United States and in certain other jurisdictions.

SSH2, the SSH logo, SSH Certifier are trademarks of SSH
Communications Security Corp, and may be registered in certain
jurisdictions. All other names and marks are property of their respective

owners, 0K |

Mot connected - press Enter or Space ko connect | ‘80x24 | @ [T4

IPSec & SSL vs. SSH

- IPSec is a lower level (IP-based) security solution
than SSH. More fundamental but really expensive.
SSH is quicker and easier to deploy.

+ SSL or TSL is TCP-based and "always” used in WEB
applications.

* There are some SSL-enhanced Telnet/FTP
applications in some single hacked or patched
versions. SSH is a more integrated toolkit designed
just for security.

Protocol Details

SSH Architecture

»+ SSH protocol is based on a client/server
architecture

- A ssh server running on the server side is listening on

the 22 TCP port for incoming connection

joseph@hlt029:~> sudo netstat --tcp --listening --program
tcp6 0 O *:ssh *:* LISTEN 3075/sshd

- A client who wants to connect to a remote host will
execute the sshA command
joseph@PeT43:~> ssh hlt029

Remark: Port 22/TCP ,UDP: for (Secure Shell) - used for secure logins,
file transfers (-,) and port forwarding

http://en.wikipedia.org/wiki/Secure_shell
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/SSH_file_transfer_protocol

3 Layers

SSH-2 Protocol has a very clean 3-layer internal
architecture (RFC 4251).

- Transport Layer (RFC 4253):

Initial key exchange, server authentication, data
confidentiality, data integrity, compression (optional), and
key re-exchange.

- User Authentication Layer (RFC 4252):

Client authentication, provide various authentication
methods.

- Connection Layer (RFC 4254).

Defines the logical channels and the requests to handle the
services like: secure interactive shell session, TCP port
forwarding and X11 forwarding.

3 Layers

application software (e.g., ssh, sshd, scp, sfip, sftp-server)

SSH Authentication Protocol [SSH-AUTH] = SSH Connection Protocol [SSH-CONN]) SSH File Transfer Protocol [SSH-SFTP]
client authentication channel multiplexing remote filesystem access
publickey pseudo-terminals file transfer
hostbased flow control
password signal propagation
gssapi remote program execution
gssapi-with-mic authentication agent forwarding
external-keyx TCP port and X forwarding
keyboard-interactive terminal handling
subsystems
SSH Transport Protocol [SSH-TRANS]
algorithm negotiation
session key exchange
session 1D
server authentication
privacy
integrity
data compression

TCP {or other transpawent, reliable, duplex byte-oriented connection)

Outline

« Protocol Details

- Transport Layer
~ User Authentication Layer
- Connection Layer

Transport Layer

» Fundamental building block of SSH.

» Providing services like initial connection,
record protocol, server authentication, and
basic encryption and integrity.

+ After that, the client has a single, secure,
full duplex stream to an authenticated
server.

Connection

+ Example:

joseph@HLT029:~ > ssh -vv joseph@freebsd
OpenSSH_4.3p2 Debian-6, OpenSSL 0.9.8c 05 Sep 2006
debugl: Reading configuration data /etc/ssh/ssh_config

debugl: Applying options for *
debugl: Connecting to freebsd [143.89.152.72] port 22.
debugl: Connection established.

Version Selection

 Protocol version selection:
- Exchange a message in a form:

SSH-protoversion-softwareversion SP comments CR LF

- Example:

debugl: Remote protocol version 2.0, remote software version OpenSSH_4.2p1
FreeBSD-20050903

debugl: match: OpenSSH_4.2p1 FreeBSD-20050903 pat OpenSSH*

debugl: Enabling compatibility mode for protocol 2.0

debugl: Local version string SSH-2.0-OpenSSH_4.3p2 Debian-6

- after that, both sides switch to a nontextual, record-
oriented protocol, binary packet protoco/ (the basis of
SSH transport).

Parameter Negotiation: Offers from the Client

Key exchange algorithms:

debug?2: kex_parse_kexinit: diffie-hellman-group-exchange-shal,diffie-hellman-group14-shal,diffie-
hellman-groupl-shal

SSH host key types:

debug2: kex_parse_kexinit: ssh-rsa,ssh-dss,null
[NULL is for Kerberos authentication]

Data encryption ciphers:

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour128,arcfour256,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-
ctr,aes192-ctr,aes256-ctr

Data integrity algorithms:
debug2: kex_parse_kexinit: hmac-md5,hmac-shal,hmac-ripemd160,hmac-
ripemd160@openssh.com,hmac-shal-96,hmac-md5-96

Data compression algorithms (optional):
debug2: kex_parse_kexinit: none,zlib@openssh.com,zlib

Parameter Negotiation:
Messages back from the server:

debug?2: kex_parse_kexinit: diffie-hellman-group-exchange-shal,diffie-hellman-group14-
shal,diffie-hellman-groupl-shal

debug2: kex_parse_kexinit: ssh-dss

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour128,arcfour256,arcfour,aes192-cbc,aes256-cbc,rijndael-
cbc@lysator.liu.se,aes128-ctr,aes192-ctr,aes256-ctr

debug2: kex_parse_kexinit: hmac-md5,hmac-shal,hmac-ripemd160,hmac-
ripemd160@openssh.com,hmac-shal-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib@openssh.com

Key Exchange & Server Auth.

+ After the para. negotiation, the real master key
exchange is ready to go (details are omitted):

debugl: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent
debugl: expecting SSH2_ MSG_KEX_DH_GEX_GROUP
debug2: dh_gen_key: priv key bits set: 132/256
debug?2: bits set: 513/1024
debugl: SSH2 MSG_KEX_DH_GEX_INIT sent
debugl: expecting SSH2_MSG_KEX_ DH_GEX_REPLY

- Server authentication:

server replied its public host key
debugl: Host 'freebsd' is known and matches the DSA host key.

debugl: Found key in /home/joseph/.ssh/known_hosts:51
debug?2: bits set: 502/1024
debugl: ssh_dss_verify: signature correct

Derive other Keys

- Based on the shared master key, derives data encryption
key and data integrity key, in both sides (details are
omitted):

debug2: kex_derive_keys

debug2: set_newkeys: mode 1 [MODE_OUT send out]
debugl: SSH2_ _MSG_NEWKEYS sent

debugl: expecting SSH2_ MSG_NEWKEYS

debug2: set_newkeys: mode O [MODE_IN receive in]

recved the new keys from server side
debugl: SSH2 MSG_NEWKEYS received

» Service request: (the end of key exchange)

debugl: SSH2 MSG_SERVICE_REQUEST sent
debug2: service_accept: ssh-userauth
debugl: SSH2 MSG_SERVICE_ACCEPT received

Remarks and Question

» The Key Exchange actually produces two values:

* a shared secret K and an exchange hash value H (details are
omitted).

+ The unique H is used as the Session ID.

Data flow directions client->server and server-

>client are independent, may use different
algorithms (i.e. 3DES+SHA1 and Blowfish+MD5)

- But in practice, it is recommended that the same cipher and
same hash function are used for both directions.

» If compression is enabled, the data is first
compressed and only then encrypted

How to obtain server's host key during the first
log in?

How to get host public key the 1st time?

- Two different trust models:

- the client maintain a local database that associates each host
name and corresponding public host key.

- get the host key from a trusted 3™ party (Certification
Authority)

 Another Option: host key association is NOT checked

for the first login.
joseph@freebsd:™~ > ssh hlt033
The authenticity of host 'hlt033.cse.ust.hk (143.89.152.142)' can't be established.

DSA key fingerprint is 9b:1f:73:ff:d1:1:89:91:35:97:11:20:f2:ac:f9:72.
Are you sure you want to continue connecting (yes/no)?

Required/Recommended Algorithm

- Key Exchange:
- diffie-hellman-groupl-shal [Required]
- diffie-hellman-group14-shal [Required]

* Data Encryption:

- 3des-cbc [Required]

- AESI128-cbc [Recommended]
- Data Integrity:

- hmac-shal [Required],

- hmac-shal-96 [Recommended]
* Public Key:

- ssh-dss [Required]

- ssh-rsa [Recommended]

Outline

« Protocol Details

- Transport Layer
~ User Authentication Layer
- Connection Layer

User Authentication Layer (1)

* Runs atop of transport layer

* Relies on data privacy and integrity,
provided by the transport layer

« Service ID: "ssh-userauth”

- Has access to the shared secret Session ID
from transport layer

* Many authentication methods are available
and they are negotiable

User Authentication Layer (2)

+ Client requests service "ssh-userauth”

+ Server responds with the list of available
authentication methods. More than one
authentication may be required

* Methods:
- Public key [Required]
- Password
- Host-based

Authent. Request & Response

» Authentication Request is driven by the client and
has the following parts:

- user name
- service name
- method name

« Authentication Response:
- SUCCESS: authentication done.

- FAILURE: return a list of authentication methods that
cah continue

« Example: next page.

Example of Client Authentication

+ User Authentication Example:
Server side:
debugl: userauth-request for user joseph service ssh-connection method none
debugl: attempt O failures O
Failed none for joseph from 143.89.152.138 port 60465 ssh2
Client side
debugl: Authentications that can continue: publickey,keyboard-interactive
debugl: Next authentication method: publickey [failed]
debugl: Next authentication method: keyboard-interactive
Password:

#server side:
Accepted password for joseph from 143.89.152.138 port 60465 ssh2
debugl: Entering interactive session for SSH2

Outline

« Protocol Details

- Transport Layer
- User Authentication Layer
- Connection Layer

Connection Layer

* Runs over the transport layer, utilizes the
authentication layer

* Multiplexes the encrypted connection
rovided by the transport layer into several
ogical channels

* Channel type:

- Interactive sessions
- Remote command execution

- X11: an X11 client connection
- TCP/IP port forwarding

Connection Layer

* Channels - can be opened by either side
» To open a new channel
- Allocate a channel number

- Send a request to the other side, giving
channel type

- The other side either rejects or accepts
and returns its channel number

- Therefore a channel is identified by two
numbers

Example

» Output of the client opening a session:

debugl: Authentication succeeded (keyboard-interactive).
debugl: channel 0: new [client-session]

debug?2: channel 0: send open

debugl: Entering interactive session.

debug2: channel O: request pty-req confirm 0

Applications

X11 Forwarding

josephwu@hlt030
Password:
Last login: Sun Dec 3 16:21:02 2006 from hlt029.cse
josephwu@HLTO30: ~

ﬁosephwu@HLT030:=

Port Forwarding

Tunneling the connection to a remote IMAP server through SSH:
Sssh -L2001:localhost:143 server

Host A Host B
S g_:-"'upplgcoﬁon"'-.o e o application

s client . server

P _1-'0—
- SSoaay SSH
sy e g Iy,

TCP TCP

IMAP (Internet Message Access Protocol) is an Internet standards-track protocol
for accessing messages (mail, bboards, news, etc).

SCP, and SFTP

» SCP: copying files btw. hosts by using SSH for data
transfer.

joseph@hlt029:~> scp -r mydev/* joseph@hlt030:/data/mydev

- SFTP: Secure FTP over SSH

joseph@HLT029:~ > Iftp sftp://freebsd
Iftp freebsd:~> user joseph
Password:

Iftp joseph@freebsd:~> Is

drwxr-xr-x 5 joseph joseph 512 Dec 3 16:20.

drwxr-xr-x 6 root wheel 512 Nov 17 04:18 ..

-FW------- 1 joseph joseph 64 Dec 3 16:20 .Xauthority
-FW------- 1 joseph joseph 4760 Dec 3 23:33 .bash_history
-rw-r--r-- 1 joseph joseph 1141 Nov 18 22:52 .bash_profile
-rw-r--r-- 1 joseph joseph 3169 Sep 19 17:42 .bashrc

SSH Public Key Authentication

* using "ssh-keygen'' to generate a public/private RSA or
DSA key pair, with protection from a passphrase:
joseph@HLT029:~ > ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/joseph/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/joseph/.ssh/id_rsa.
Your public key has been saved in /home/joseph/.ssh/id_rsa.pub.

» adding your public key into the server(freebsd)'s
“authorized_keys" database. (~/.ssh/authorized_keys)

- connecting to the server by using public key
authentication:

joseph@HLT029:~ > ssh freebsd
Enter passphrase for key '/home/joseph/.ssh/id_rsa':

References

http://www.snailbook.com/

Acknowledgements

. OS used in experiments: GNU/Linux Debian etch and
FreeBSD 6.1

. SSH-2 Client & Server: OpenSSH 4.2 & 4.3

. Some figures used in this slides are copied from the

« book"
" at Safari Books Online (Oreilly)

http://proquest.safaribooksonline.com/0596008953

