

Cryptography and Security

Cunsheng Ding HKUST, Hong Kong

Version 3

Lecture 08: The RSA & ElGamal Public-Key Cipher

Objectives of this Lecture

- 1. To introduce the RSA and ElGamal public-key ciphers.
- 2. To look at their security issues.
- The RSA public-key cipher was invented in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT.
- The ElGamal public-key cipher was described by Taher ElGamal in 1985.

The RSA Public-Key Cipher

Euler's Totient Function $\phi(n)$

 $\phi(n)$: The number of positive integers less than n that is relative prime to n.

Example: $\phi(7) = 6$ because

$$\{x: 1 \le x < 7, \gcd(x, 7) = 1\} = \{1, 2, 3, 4, 5, 6\}.$$

Example: $\phi(6) = 2$ because

$$\{x: 1 \le x < 6, \gcd(x, 6) = 1\} = \{1, 5\}.$$

Question: What is $\phi(8)$?

Formula for Euler's Totient Function ϕ

Theorem:

- $\phi(p) = p 1$ for any prime number p.
- $\phi(pq) = (p-1)(q-1)$ for any two distinct primes p and q.

Exercise: Give a direct proof for the two claims using the definition of $\phi(n)$.

Assignment: Work out a formula for $\phi(n)$ in terms of the canonical factorization of $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$, where these p_i are pairwise distinct and t is a positive integer.

The RSA Public-key Cipher

Plaintext space: $\mathcal{M} = \{0, 1\}^*$.

Ciphertext space: $C = \{0, 1\}^*$.

Binary representation and integers:

A binary block $M = m_0 m_1 \cdots m_{k-1}$ is identified with integer

$$m_0 + m_1 2 + m_2 2^2 + \dots + m_{k-1} 2^{k-1}$$

which is in $\{0, 1, \dots, 2^k - 1\}$.

The RSA Public-key Cipher

Choose two distinct primes p and q. Define n = pq.

Select d: $1 \le d < \phi(n)$ with $gcd(d, \phi(n)) = 1$.

Compute *e*: *e* is the multiplicative inverse of *d* modulo $\phi(n)$.

```
Public key: (e, n)
```

Private key: d

Public-key space: $\mathcal{K}_e = \{1 \le i < \phi(n) : \gcd(i, \phi(n)) = 1\} \times \{n\}$ Private-key space: $\mathcal{K}_d = \{1 \le i < \phi(n) : \gcd(i, \phi(n)) = 1\}.$

The RSA Public-key Cipher

Let $2^k < n < 2^{k+1}$, i.e., $k = \lfloor \log_2 n \rfloor$. Plaintext is broken into blocks of length k.

Encryption: For each block $M, C = M^e \mod n$.

Decryption: $M = C^d \mod n$.

Remark: Each message block M, when viewed as an integer, is at most $2^k - 1 < n - 1$.

Exercise: Prove the correctness of the decryption process above.

The Parameters of the RSA Public-key Cipher

Parameters: $p \quad q \quad n \quad \phi \quad e \quad d$

Public key: (e, n)

Private key: d

Other parameters: $p, q, \phi(n)$ must be kept secret.

Question: Why?

The Security of the RSA Public-key Cipher

Brute force attack: Trying all possible private keys.

The number of decryption keys:

$$|\{1 \le d < \phi(n)| \gcd(d, \phi(n)) = 1\}| = \phi(\phi(n)) = \phi((p-1)(q-1)).$$

Comment: As long as p and q are large enough, this attack does not work as $\phi((p-1)(q-1)) - 1$ will be large! But the larger the n, the slower the system.

Attacking the RSA Using Mathematical Structures

Attack: Factor *n* into *pq*. Thus $\phi(n)$ and *d* is known.

Attack: Determine $\phi(n)$ directly, without first determining p and q.

Attack: Determine d directly, without first determining $\phi(n)$.

Attacking the RSA Using Mathematical Structures

Comment: It is believed that determine $\phi(n)$ given n is equivalent to factoring n.

Comment: With presently known algorithms, determining d given e and n, **appears** to be at least as time-consuming as the factoring problem.

Claim: We may use factoring as the benchmark for security evaluation.

RSA Security: Factoring

Security of RSA with respect to factoring depends on:

- (1) development of algorithms for factorization;
- (2) increase in computing power.

Comment: A number of algorithms for factorization. Most of them involve too much number theory and cannot be introduced here.

Comment: Computing power increases dramatically each year due to advances in hardware technology.

HKUST, Hong Kong

RSA Security: Advance in Factoring

Measure: in MIPS-years, a million-instructions-per-second processor running for one year.

No. of digits	100	110	120	129	130
No. of bits	332	365	398	428	431
Year	1991	1992	1993	1994	1996
MIPS-Years	7	75	830	5000	500

Key size: 1024 to 2048 bits for now, and should be increased later due to advance in factorization and/or hardware.

Security of the RSA Public-Key Cipher

Question: Does the RSA public-key cipher satisfy Conditions C1 and C2 specified in the previous lecture?

Answer: People believe that the answer is positive due to the difficulty of the integer factorisation problem. But one one has proved this belief.

CUNSHENG DING HKUST, Hong Kong

How to Choose p and q

- They should be both random primes, not primes of special form, say for example, $2^k - 1$ or $2^k + 1$. It may be easier to factor n if so. Whv?
- They should not be too close to each other. Why?
- They should not be too far away, in particular, they should differ in length by only a few digits. Why?
- Both (p-1) and (q-1) should contain a large prime factor. Why?
- gcd(p-1, q-1) should be small. Why?

Suggestion: If you wish to learn more, try to work out these problems.

How to Choose e and d

In theory, e and d could be any integer between 1 and $\phi(n)$ and relative to $\phi(n)$. However,

• d and e should not be too small.

Why?

Suggestion: If you wish to learn more, try to work out this problem.

Further Comments on RSA

Not all public-key ciphers can be used for signing digital documents in the way described in Lecture 7. However,

• RSA can be used for signing digital documents in this way.

Question: Why RSA can be used for signing digital documents in this way?

The ElGamal Public-Key Cipher

The Discrete Logarithm Problem

The discrete logarithm problem: Let p be a prime, and let α be a primitive root of p. The *discrete logarithm problem* is to find $\log_{\alpha} a$ for any $1 \le a \le p-1$, which is defined to be the unique integer $0 \le i \le p-2$ such that

$$a = \alpha^i \mod p.$$

Comment: No polynomial-time algorithm is known for this problem (except for certain special primes p).

Comment: If p has 130 or more digits, the DLP is computationally infeasible to solve in general.

System Parameters of the ElGamal Cipher

Choosing system parameters:

- Choose p to be a large prime, and
- choose α to be a primitive root of p.

Note that both p and α are in the public domain and public parameters.

Key Pairs for the ElGamal Public-Key Cipher

User's key pair:

- Each user chooses a secret number u in \mathbb{Z}_{p-1} , as his/her private key $k_d := u$.
- The corresponding public key $k_e = (p, \alpha, \beta)$, where $\beta = \alpha^u \mod p$.

The relation between the public key and the private key is very clear.

The Four Spaces of the ElGamal Public-Key Cipher

- $\mathcal{M} = \mathbf{Z}_p^* = \{1, \cdots, p-1\}$
- $\mathcal{C} = \mathbf{Z}_p^* \times \mathbf{Z}_p^*$
- $\mathcal{K}_e = \{p\} \times \{\alpha\} \times \mathbf{Z}_p^*$. So $|\mathcal{K}_e| = p 1$. The public key $k_e = (p, \alpha, \beta)$.
- $\mathcal{K}_d = \mathbf{Z}_{p-1}$. Thus $|\mathcal{K}_d| = p 1$.

The private key $k_d = u$ such that $\beta = \alpha^u \mod p$.

The Encryption and Decryption Functions

Encryption: For any public key $k_e = (p, \alpha, \beta)$, and for a (secret) random number $v \in \mathbb{Z}_{p-1}$,

$$E_{k_e}(x,v) = (y_1, y_2),$$

where

$$y_1 = \alpha^v \mod p, \quad y_2 = x\beta^v \mod p.$$

Decryption: For any $(y_1, y_2) \in \mathbf{Z}_p^* \times \mathbf{Z}_p^*$,

$$D_{k_d}(y_1, y_2) = y_2 \left(y_1^{k_d}\right)^{-1} \mod p.$$

Exercise: Prove the correctness of the decryption process above.

Some Features of the ElGamal Public-Key Cipher

- Encryption has data expansion. This is good for security, but bad for cost and performance.
- For decryption, the receiver need not know the secret number v!
- The system is not **deterministic**, since the ciphertext depends on both the plaintext x and the random number v chosen by Alice, the sender. Hence, the encryption is **probabilistic**.
- The ElGamal public-key cipher cannot be used in the digital signature scheme covered in Lecture 7, as $\mathcal{M} \neq \mathcal{C}$, i.e., the domain and range of the function E_{k_e} are not the same. In fact, they are: \mathbf{Z}_p^* and $\mathbf{Z}_p^* \times \mathbf{Z}_p^*$.
- But it can be used in the key distribution protocol covered in Lecture 7.

Weak Keys in the ElGamal Public-Key Cipher

The following two pairs of keys are weak (in fact, cannot be used):

•
$$k_e = (p, \alpha, \alpha), \, k_d = u = 1.$$

Once k_e is published, k_d is easily seen to be 1.

•
$$k_e = (p, \alpha, 1), k_d = u = 0.$$

Once k_e is published, k_d is easily seen to be 0.

Here we have seen specific examples of weak keys!

CUNSHENG DING HKUST, Hong Kong

Security of the ElGamal Public-Key Cipher

Question: Is it computationally feasible to derive the private key k_d from the public key k_e ?

Solution: Note that $k_e = (p, \alpha, \beta)$, where

$$\beta = \alpha^u \mod p = \alpha^{k_d} \mod p.$$

It depends on whether there is an efficient algorithm for solving the discrete logarithm problem.

It is believed that there is no polynomial-time algorithm for the DLP in general. So if p is large enough, say with 160 digits, and is not in certain special forms, it is computationally infeasible to derive k_d from k_e .

Security of the ElGamal Public-Key Cipher

Question: Given a ciphertext (y_1, y_2) , is it computationally feasible to derive its corresponding plaintext x?

Attack 1: One way is to use $x = y_2\beta^{-v} \mod p$, where $v \in \mathbb{Z}_{p-1}$ and β is publicly known. Since v is a secret random number, this does not work if p is large enough.

Attack 2: The second way is to use

$$x = D_{k_d}(y_1, y_2) = y_2 \left(y_1^{k_d}\right)^{-1} \mod p.$$

This does not work either as it is hard to determine k_d .

Answer: It is believed that the answer to this question above in general is NO.

Security of the ElGamal Public-Key Cipher

Summary: Based on the arguments in the previous pages, people believe that the ElGamal public-key cipher satisfies Conditions C1 and C2. But there is no rigorous prof of this belief.