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Lecture 08: The RSA & ElGamal Public-Key Cipher

Objectives of this Lecture

1. To introduce the RSA and ElGamal public-key ciphers.

2. To look at their security issues.

• The RSA public-key cipher was invented in 1977 by Ron Rivest, Adi

Shamir, and Len Adleman at MIT.

• The ElGamal public-key cipher was described by Taher ElGamal in

1985.
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The RSA Public-Key Cipher
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Euler’s Totient Function φ(n)

φ(n): The number of positive integers less than n that is relative prime to

n.

Example: φ(7) = 6 because

{x : 1 ≤ x < 7, gcd(x, 7) = 1} = {1, 2, 3, 4, 5, 6}.

Example: φ(6) = 2 because

{x : 1 ≤ x < 6, gcd(x, 6) = 1} = {1, 5}.

Question: What is φ(8)?
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Formula for Euler’s Totient Function φ

Theorem:

• φ(p) = p− 1 for any prime number p.

• φ(pq) = (p− 1)(q − 1) for any two distinct primes p and q.

Exercise: Give a direct proof for the two claims using the definition of

φ(n).

Assignment: Work out a formula for φ(n) in terms of the canonical

factorization of n = pe11 pe22 · · · pett , where these pi are pairwise distinct and t

is a positive integer.
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The RSA Public-key Cipher

Plaintext space: M = {0, 1}∗.

Ciphertext space: C = {0, 1}∗.

Binary representation and integers:

A binary block M = m0m1 · · ·mk−1 is identified with integer

m0 +m12 +m22
2 + · · ·+mk−12

k−1

which is in {0, 1, · · · , 2k − 1}.
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The RSA Public-key Cipher

Choose two distinct primes p and q. Define n = pq.

Select d: 1 ≤ d < φ(n) with gcd(d, φ(n)) = 1.

Compute e: e is the multiplicative inverse of d modulo φ(n).

Public key: (e, n)

Private key: d

Public-key space: Ke = {1 ≤ i < φ(n) : gcd(i, φ(n)) = 1} × {n}

Private-key space: Kd = {1 ≤ i < φ(n) : gcd(i, φ(n)) = 1}.
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The RSA Public-key Cipher

Let 2k < n < 2k+1, i.e., k = ⌊log2 n⌋. Plaintext is broken into blocks of

length k.

Encryption: For each block M , C = Me mod n.

Decryption: M = Cd mod n.

Remark: Each message block M , when viewed as an integer, is at most

2k − 1 < n− 1.

Exercise: Prove the correctness of the decryption process above.
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The Parameters of the RSA Public-key Cipher

Parameters: p q n φ e d

Public key: (e, n)

Private key: d

Other parameters: p, q, φ(n) must be kept secret.

Question: Why?
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The Security of the RSA Public-key Cipher

Brute force attack: Trying all possible private keys.

The number of decryption keys:

|{1 ≤ d < φ(n)| gcd(d, φ(n)) = 1}| = φ(φ(n)) = φ((p− 1)(q − 1)).

Comment: As long as p and q are large enough, this attack does not work

as φ((p− 1)(q − 1))− 1 will be large! But the larger the n, the slower the

system.
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Attacking the RSA Using Mathematical Structures

Attack: Factor n into pq. Thus φ(n) and d is known.

Attack: Determine φ(n) directly, without first determining p and q.

Attack: Determine d directly, without first determining φ(n).
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Attacking the RSA Using Mathematical Structures

Comment: It is believed that determine φ(n) given n is equivalent to

factoring n.

Comment: With presently known algorithms, determining d given e and

n, appears to be at least as time-consuming as the factoring problem.

Claim: We may use factoring as the benchmark for security evaluation.
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RSA Security: Factoring

Security of RSA with respect to factoring depends on:

(1) development of algorithms for factorization;

(2) increase in computing power.

Comment: A number of algorithms for factorization. Most of them

involve too much number theory and cannot be introduced here.

Comment: Computing power increases dramatically each year due to

advances in hardware technology.
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RSA Security: Advance in Factoring

Measure: in MIPS-years, a million-instructions-per-second processor

running for one year.

No. of digits 100 110 120 129 130

No. of bits 332 365 398 428 431

Year 1991 1992 1993 1994 1996

MIPS-Years 7 75 830 5000 500

Key size: 1024 to 2048 bits for now, and should be increased later due to

advance in factorization and/or hardware.
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Security of the RSA Public-Key Cipher

Question: Does the RSA public-key cipher satisfy Conditions C1 and C2

specified in the previous lecture?

Answer: People believe that the answer is positive due to the difficulty of

the integer factorisation problem. But one one has proved this belief.
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How to Choose p and q

• They should be both random primes, not primes of special form, say

for example, 2k − 1 or 2k + 1. It may be easier to factor n if so. Why?

• They should not be too close to each other. Why?

• They should not be too far away, in particular, they should differ in

length by only a few digits. Why?

• Both (p− 1) and (q − 1) should contain a large prime factor. Why?

• gcd(p− 1, q − 1) should be small. Why?

Suggestion: If you wish to learn more, try to work out these problems.
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How to Choose e and d

In theory, e and d could be any integer between 1 and φ(n) and relative to

φ(n). However,

• d and e should not be too small. Why?

Suggestion: If you wish to learn more, try to work out this problem.
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Further Comments on RSA

Not all public-key ciphers can be used for signing digital documents in the

way described in Lecture 7. However,

• RSA can be used for signing digital documents in this way.

Question: Why RSA can be used for signing digital documents in this

way?
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The ElGamal Public-Key Cipher
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The Discrete Logarithm Problem

The discrete logarithm problem: Let p be a prime, and let α be a

primitive root of p. The discrete logarithm problem is to find logα a for any

1 ≤ a ≤ p− 1, which is defined to be the unique integer 0 ≤ i ≤ p− 2 such

that

a = αi mod p.

Comment: No polynomial-time algorithm is known for this problem

(except for certain special primes p).

Comment: If p has 130 or more digits, the DLP is computationally

infeasible to solve in general.
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System Parameters of the ElGamal Cipher

Choosing system parameters:

• Choose p to be a large prime, and

• choose α to be a primitive root of p.

Note that both p and α are in the public domain and public parameters.
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Key Pairs for the ElGamal Public-Key Cipher

User’s key pair:

• Each user chooses a secret number u in Zp−1, as his/her private key

kd := u.

• The corresponding public key ke = (p, α, β), where β = αu mod p.

The relation between the public key and the private key is very clear.
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The Four Spaces of the ElGamal Public-Key Cipher

• M = Z∗

p = {1, · · · , p− 1}

• C = Z∗

p × Z∗

p

• Ke = {p} × {α} × Z∗

p. So |Ke| = p− 1.

The public key ke = (p, α, β).

• Kd = Zp−1. Thus |Kd| = p− 1.

The private key kd = u such that β = αu mod p.
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The Encryption and Decryption Functions

Encryption: For any public key ke = (p, α, β), and for a (secret) random

number v ∈ Zp−1,

Eke
(x, v) = (y1, y2),

where

y1 = αv mod p, y2 = xβv mod p.

Decryption: For any (y1, y2) ∈ Z∗

p × Z∗

p,

Dkd
(y1, y2) = y2

(

ykd

1

)

−1

mod p.

Exercise: Prove the correctness of the decryption process above.
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Some Features of the ElGamal Public-Key Cipher

• Encryption has data expansion. This is good for security, but bad for

cost and performance.

• For decryption, the receiver need not know the secret number v!

• The system is not deterministic, since the ciphertext depends on both

the plaintext x and the random number v chosen by Alice, the sender.

Hence, the encryption is probabilistic.

• The ElGamal public-key cipher cannot be used in the digital signature

scheme covered in Lecture 7, as M 6= C, i.e., the domain and range of

the function Eke
are not the same. In fact, they are: Z∗

p and Z∗

p × Z∗

p.

• But it can be used in the key distribution protocol covered in Lecture 7.
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Weak Keys in the ElGamal Public-Key Cipher

The following two pairs of keys are weak (in fact, cannot be used):

• ke = (p, α, α), kd = u = 1.

Once ke is published, kd is easily seen to be 1.

• ke = (p, α, 1), kd = u = 0.

Once ke is published, kd is easily seen to be 0.

Here we have seen specific examples of weak keys!
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Security of the ElGamal Public-Key Cipher

Question: Is it computationally feasible to derive the private key kd from

the public key ke?

Solution: Note that ke = (p, α, β), where

β = αu mod p = αkd mod p.

It depends on whether there is an efficient algorithm for solving the discrete

logarithm problem.

It is believed that there is no polynomial-time algorithm for the DLP in

general. So if p is large enough, say with 160 digits, and is not in certain

special forms, it is computationally infeasible to derive kd from ke.
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Security of the ElGamal Public-Key Cipher

Question: Given a ciphertext (y1, y2), is it computationally feasible to

derive its corresponding plaintext x?

Attack 1: One way is to use x = y2β
−v mod p, where v ∈ Zp−1 and β is

publicly known. Since v is a secret random number, this does not work if p

is large enough.

Attack 2: The second way is to use

x = Dkd
(y1, y2) = y2

(

ykd

1

)

−1

mod p.

This does not work either as it is hard to determine kd.

Answer: It is believed that the answer to this question above in general is

NO.
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Security of the ElGamal Public-Key Cipher

Summary: Based on the arguments in the previous pages, people believe

that the ElGamal public-key cipher satisfies Conditions C1 and C2. But

there is no rigorous prof of this belief.
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