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Lecture 03: Design Ideas of One-Key Block Ciphers

The Outline of this Lecture

1. Linear and nonlinear functions.

2. Shannon’s confusion and diffusion.

3. Basic design ideas of one-key ciphers.

4. The finite field GF(28).

Page 1 Version 3



❁
CUNSHENG DING

HKUST, Hong Kong Cryptography and Security

Designing a Secure & Practical One-key Block Cipher

In Lecture 2, we did the following:

1. We defined one-key block ciphers (M, C,K, Ek, Dk) and made three

security requirements.

2. We discussed simple substitution ciphers, and know that they are not

secure.

3. We learnt the one-time pad cipher, which is secure in the

information-theoretic sense, but impractical.

Question: How does one design a secure and practical cipher?
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Part 1: Linear and Nonlinear Functions
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Abelian groups

Abelian group: An Abelian group is a set A associated with a binary

operation + with the following properties:

• x+ y ∈ A for any pair of x and y in A (A is closed under +).

• (x+ y) + c = x+ (y + c) for any x, y and z in A (“+” is associative).

• x+ y = y + x for any pair of x and y in A (“+” is commutative).

• There is a special element 0 ∈ A such that 0 + x = x for all x ∈ A

(identity element).

• For any x ∈ A there is an element y ∈ A such that x+ y = 0 (y is the

inverse of x with respect to +).

If A is a finite set, (A,+) is called a finite Abelian group. In this course, we

consider only finite Abelian groups.

Page 4 Version 3



❁
CUNSHENG DING

HKUST, Hong Kong Cryptography and Security

Examples of Abelian Groups

Example of Abelian groups: (Zp,⊕p) is a finite Abelian group with p

elements, where p is any prime and Zp = {0, 1, 2, . . . , p− 1}.

Question: What is the identity element of (Zp,⊕p)?

Example of Abelian groups: (Z∗

p,⊗p) is a finite Abelian group with

p− 1 elements, where p is any prime and Z∗

p = {1, 2, · · · , p− 1}.

Question: What is the identity element of (Z∗

p,⊗p)?

Remark: The finite field Zp has two Abelian groups: the additive group

(Zp,⊕p), and multiplicative group (Z∗

p,⊗p).
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The Abelian Group (Zn

m
,+)

Definition: Let m ≥ 2 and n ≥ 1 be integers. Let

Zn
m = Zm × Zm × · · · × Zm (n copies of Zm).

For any two elements

x = (x1, x2, · · · , xn) ∈ Zn
m, y = (y1, y2, · · · , yn) ∈ Zn

m,

define

x+ y = (x1 ⊕m y1, x2 ⊕m y2, · · · , xn ⊕m yn) ∈ Zn
m.

Proposition: (Zn
m,+) is an Abelian group with mn elements.

Remark: This Abelian group will be employed very often.
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Linear and Affine Functions

Definition: A function f from an Abelian group (A,+) to an Abelian

group (B,+) is called linear if and only if f(x+ y) = f(x) + f(y) for all

x, y ∈ A.

A function g : A → B is affine if and only if g = f + b for a linear function

f : A → B and a constant b ∈ B.

Example: Let f(x) = x1 + x2 + · · ·+ xn, where x = (x1, · · · , xn) ∈ Zn
2 and

xi ∈ Z2. Then f is a linear function from (Zn
2 ,+) to (Z2,+). Note that +

denotes the bitwise exclusive-or and exclusive-or operations respectively.

The function f(x) + 1 is an affine function from (Zn
2 ,+) to (Z2,+).
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Linear Functions: Example

Let P be a permutation of the set {1, · · · , n}. Define a function LP from

Zn
2 to itself by

LP ((x1, x2, · · · , xn)) = (xP (1), xP (2), · · · , xP (n))

for any x = (x1, x2, . . . , xn) ∈ Zn
2 .

The function LP is a linear function from (Zn
2 ,+) to (Zn

2 ,+).

Exercise: Prove that LP is a linear function from (Zn
2 ,+) to (Zn

2 ,+).
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Nonlinear Functions

Definition: Any function that is not affine is called a nonlinear function.

Example: The following functions from (Z4
2,+) to (Z2,+) are nonlinear:

f(x1, x2, x3, x4) = x1 + x2 + x3 + x4 + x1 × x2 × x3 × x4

and

g(x1, x2, x3, x4) = x1 + x2 + x3 + x4 + x1 × x2 × x3,

where the + and × are the modulo-2 addition and modulo-2 multiplication.

Exercise: Prove that these two functions are nonlinear.
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Linear and Nonlinear Functions

Question: Why are we interested in linear and nonlinear functions?

Answer: Both linear and highly nonlinear functions are needed in many

cryptographic systems as basic building blocks.

Comment: Our human body needs both flesh (linear function) and bone

(nonlinear function)!
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Part 2: Shannon’s Diffusion and Confusion
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Diffusion Requirement

Diffusion: The minimum number of bits in the ciphertext block affected

by changing one bit in the plaintext block or secret key over the total

number of bits in the ciphertext block.

x plaintext

k 

key

y ciphertext

E (x)k

1. The higher this measure quantity, the better the diffusion.

2. Usually linear functions are employed to provide diffusion.
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Example of Bad Diffusion

Example: Suppose that x, y and k all have 8 bits. Let y = Ek(x) be

defined by

y1 = x1 + k1, y2 = x2 + k2, y3 = x3 + k3, y4 = x4 + k4,

y5 = x5 + k5, y6 = x6 + k6, y7 = x7 + k7, y8 = x8 + k8,

where all the additions + are the integer addition modulo 2.

Comments: The function y = Ek(x) has very bad diffusion, because each

plaintext bit or key bit affects only one bit in the output block y.
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Example of Good Diffusion

Example: Let x, y and k all have 8 bits, and y = Ek(x) be defined by

y1 = x1 + x2 + x3 + x4 + k1 + k2 + k3 + k4,

y2 = x2 + x3 + x4 + x5 + k2 + k3 + k4 + k5,

y3 = x3 + x4 + x5 + x6 + k3 + k4 + k5 + k6,

y4 = x4 + x5 + x6 + x7 + k4 + k5 + k6 + k7,

y5 = x5 + x6 + x7 + x8 + k5 + k6 + k7 + k8,

y6 = x6 + x7 + x8 + x1 + k6 + k7 + k8 + k1,

y7 = x7 + x8 + x1 + x2 + k7 + k8 + k1 + k2,

y8 = x8 + x1 + x2 + x3 + k8 + k1 + k2 + k3.

Comments: It has very good diffusion, as each plaintext bit or key bit affects

half of the bits in the output block y = (y1, y2, · · · , y8).
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Confusion Requirement

Confusion: The “complexity” of the relations between the ciphertext bits

and the plaintext bits and the key bits.

x plaintext

k 

key

y ciphertext

E (x)k

Remark: Nonlinear functions are used to provide confusion.
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Example of Functions with Bad Confusion

Example: Suppose that x, y and k all have 8 bits. Let y = Ek(x) be defined by

y1 = x1 + x2 + x3 + x4 + k1 + k2 + k3 + k4,

y2 = x2 + x3 + x4 + x5 + k2 + k3 + k4 + k5,

y3 = x3 + x4 + x5 + x6 + k3 + k4 + k5 + k6,

y4 = x4 + x5 + x6 + x7 + k4 + k5 + k6 + k7,

y5 = x5 + x6 + x7 + x8 + k5 + k6 + k7 + k8,

y6 = x6 + x7 + x8 + x1 + k6 + k7 + k8 + k1,

y7 = x7 + x8 + x1 + x2 + k7 + k8 + k1 + k2,

y8 = x8 + x1 + x2 + x3 + k8 + k1 + k2 + k3.

Comments: y = Ek(x) has very bad confusion, as the relation between the input

bits and output bits is linear. It is trivial to solve k given a pair (x, y).
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Part 3: An Important Design Paradigm
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The Iterative Design Paradigm

In order to design Ek and Dk such that

1. they have good diffusion and confusion with respect to the secret key

bits and message bits, and

2. they are fast in software and hardware,

we could design a simple function fk and define

Ek(m) = fkℓ
(fkℓ−1

(· · · fk2
(fk1

(m)) · · · ))

where k1, k2, · · · and kℓ are binary string computed from the secret key k

according to an algorithm, and ℓ is the number of rounds of iterations.

Remark: Most ciphers are designed with this approach.

Questions: How to design fk? How many rounds of iterations?
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Part 4: The Finite Field GF(28)
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Polynomials over GF(2)

Notation: GF(2) = Z2 = {0, 1}, the finite field with only two elements,

with the associated two operations ⊕ and ⊗.

Polynomials over GF(2): a(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, where

ai ∈ GF(2).

Irreducible polynomial: p(x) = x8 + x4 + x3 + x+ 1 ∈ GF(2)[x], which

means that p(x) cannot be expressed as the product of two polynomials

over GF(2) with smaller degrees.

Remark: Irreducible polynomials are similar to primes.

A reducible polynomial over GF(2):

x4 + x3 + x+ 1 = (x+ 1)2(x2 + x+ 1)
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The Elements in GF(28)

The set GF(28) consists of all the polynomials

a(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 ∈ GF(2)[x].

where each ai ∈ {0, 1}. Hence the set GF(28) has 28 elements.

We identify a(x) = a0+a1x+a2x
2+a3x

3+a4x
4+a5x

5+a6x
6+a7x

7 with:

(a0a1a2a3a4a5a6a7)

(a0a1a2a3)(a4a5a6a7)

(a0 + a12 + a22
2a32

3)(a4 + a52 + a62
2 + a72

3) = uv

where u = a0 + a12 + a22
2a32

3 and v = a4 + a52 + a62
2 + a72

3 are in

{0, 1, ..., 9, A,B,C,D,E, F}.

A = 10, B = 11, C = 12, D = 13, E = 14, F = 15
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The Addition Operation of GF(28)

For any two elements in GF(28),

a(x) = a0 + a1x+ a2x
2 + · · ·+ a7x

7, b(x) = b0 + b1x+ b2x
2 + · · ·+ b7x

7,

their addition is defined by

a(x) + b(x) =
7∑

i=0

(ai ⊕ bi)x
i ∈ GF(28),

Proposition: (GF(28),+) is an abelian group with identity 0, the zero

polynomial.

Proof: It is trivial and left as an exercise.
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The Multiplication Operation of GF(28)

For any two elements in GF(28),

a(x) = a0 + a1x+ a2x
2 + · · ·+ a7x

7, b(x) = b0 + b1x+ b2x
2 + · · ·+ b7x

7,

their multiplication is defined by

a(x)× b(x) = a(x)b(x) mod p(x) ∈ GF(28),

where p(x) = x8 + x4 + x3 + x+ 1 and is irreducible over GF(2), and

a(x)b(x) is the school multiplication.
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The Multiplication Operation of GF(28)

Example: Let a(x) = 1 + x3 + x6 and b(x) = x+ x2 + x5 in GF(28). Then

a(x)b(x) = (x+ x2 + x5) + (x4 + x5 + x8) + (x7 + x8 + x11)

= x+ x2 + x4 + x7 + x11

and

a(x)× b(x) = a(x)b(x) mod p(x)

= x+ x2 + x4 + x7 + x11 mod (x8 + x4 + x3 + x+ 1)

= x+ x2 + x3 + x6 ∈ GF(28).
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The Multiplication Operation of GF(28)

Proposition: (GF(28)∗,×) is an abelian group with identity 1.

Proof: Let a(x) ∈ GF(28)∗. Then a(x) 6= 0. Since p(x) is irreducible over

GF(2), we have gcd(a(x), p(x)) = 1.

Applying the “Extended Euclidean Algorithm” for polynomials to a(x) and

p(x), we obtain two polynomials u(x) and v(x) such that

1 = u(x)a(x) + v(x)p(x). Then

1 = u(x)a(x) mod p(x).

Hence b(x) := u(x) mod p(x) ∈ GF(28) is the multiplicative inverse of a(x).
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The Finite Field GF(28)

Proposition: (GF(28),+,×) is a finite field with 28 elements.

Proof: Combining the two previous propositions proves the conclusion.

Claim: S(y) = y2
8
−2 = y254 is a permutation on GF(28) and is highly

nonlinear with respect to the binary operation +.

Remark: This permutation S(x) on GF(28) is employed in the Advanced

Encryption Standard. This is why we introduced the finite field GF(28) in

this lecture. Notice that S(y) = y−1 for all y 6= 0.
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