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The Floor and Ceiling Function

Definition 1

The floor function ⌊x⌋: The largest integer ≤ x .

Example 2

⌊3.99⌋ = 3. ⌊5/2⌋ = 2. ⌊3⌋ = 3.

Definition 3

The ceiling function ⌈x⌉: The smallest integer ≥ x .

Example 4

⌈3.99⌉ = 4. ⌈5/2⌉ = 3. ⌈3⌉ = 3.
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Quotient and Remainder

Theorem 5 (Division Algorithm)

Let b 6= 0 be an integer and let a be any integer. Then there are two unique

integers q and 0≤ r < |b| such that a = qb+ r .

Proof.

The proof is constructive. Define εb = 1 if b > 0 and εb =−1 if b < 0. Let

q = ⌊a/bεb⌋ and r = a−qεbb. It is easily checked that 0 < r < |b| and

a = bq + r . The proof of the uniqueness of q and r with 0≤ r < |b| is left as an

exercise.

Definition 6

The q and r in the proof above are the quotient and remainder when a is

divided by b. We write r = a mod b.
If a mod b = 0, b is called a divisor or factor of a. In this case, we say that a is

divisible by b or b divides a.
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Quotient and Remainder

Example 7

73 mod 7 = 3 and −11 mod 7 = 3.

Definition 8

A prime is a positive integer n > 1 with only two positive divisors 1 and n.

Definition 9

A common divisor of two integers a and b is a divisor of both a and b.

Example 10

60 and 24 have the positive common divisors 1, 2, 3, 4, 6, 12.
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The Greatest Common Divisor

Definition 11

The greatest common divisor (GCD) of two integers a and b, denoted by

gcd(a,b), is the largest among all the common divisors of a and b. .

Example 12

gcd(60,24) = 12, as all the positive common divisors of 60 and 24 are

1,2,3,4,6,12.

Proposition 13

gcd(b,a) = gcd(−b,a) = gcd(b,−a) = gcd(−b,−a) = gcd(a,b).

Because of this proposition, we will consider only the case that a≥ 0 and b ≥ 0

in the sequel.
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The Greatest Common Divisor

Proposition 14

Let a and b be two integers such that (a,b) 6= (0,0). Then gcd(b,a) must exist.

Proof.

The total number of positive common divisors of a and b is at most

max{|a|, |b|}.

Question 1

Is there any efficient algorithm for computing gcd(a,b) for any two positive

integers a and b?

Answer

Yes, the Euclidean algorithm.
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Computing gcd(a,b) Recursively

Lemma 15

Let b 6= 0. Then gcd(a,b) = gcd(b,a mod b).

Proof.

Note that a = qb+ r , where r = a mod b is the remainder.

By this equation, any common divisor of a and b must be a common divisor of

b and r . Conversely, any any common divisor of b and r must be a common

divisor of a and b. Hence a and b have the same set of common divisors as b

and r . Hence, the two sets of integers have the same GCD.

Remark

A recursive application of this lemma gives an efficient algorithm for computing

the gcd(a,b), which is called the Euclidean algorithm.
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Euclidean Algorithm

Example: Find gcd(66,35).
Algorithm: It works as follows and stops when the remainder becomes 0:

66 = 1×35+31 gcd(35,31)
35 = 1×31+4 gcd(31,4)
31 = 7×4+3 gcd(4,3)

4 = 1×3+1 gcd(3,1)
3 = 3×1+0 gcd(1,0)

Hence by the lemma in the previous page

gcd(66,35)= gcd(35,31)= gcd(31,4)= gcd(4,3)= gcd(3,1)= gcd(1,0)= 1.
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Euclidean Algorithm

Pseudo code

1 x← a; y ← b

2 If y = 0 return gcd(a,b) = x

3 r ← x mod y .

4 x← y

5 y ← r

6 goto step 2

Remarks

No need to read and explain this code. The example in the previous slide

is clear enough.

The time complexity is O(log |b|× [log |b|+ log |a|]2)
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The Least Common Multiple

Definition 16

The least common multiple of two integers a and b, denoted by lcm(a,b), is

the smallest positive integer that is divisible by both a and b.

Example 17

Let a = 24 = 3×23 and b = 15 = 3×5. Then lcm(a,b) = 3×5×23 = 120.

Question 2

How do we compute the least common multiple lcm(a,b) efficiently?
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Computing the Least Common Multiple

Lemma 18

Let a and b be integers. Then

lcm(a,b) =
|ab|

gcd(a,b)
.

An approach

Use the lemma above. As long as we have an efficient algorithm for computing

gcd(a,b), we have an efficient one for computing the lcm(a,b).
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Useful Results Regarding gcd(A,B)

Proposition 19

Let a, m and n be positive integers. Then

gcd(am−1,an−1) = agcd(m,n)−1.

Proposition 20

Let a, m and n be positive integers. Define d = gcd(m,n). Then

gcd(am +1,an−1) =







1, if n/d is odd and a is even,

2, if n/d is odd and a is odd,

ad +1, if n/d is even.

The proofs of these two propositions are left as exercises for those who look for

challenging problems.
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Modulo n Arithmetic

Definition 21

Let n > 1 be an integer. We define

x⊕n y = (x + y) mod n, [12⊕5 7 = (12+7) mod 5 = 4]
x⊖n y = (x− y) mod n, [12⊖5 7 = (12−7) mod 5 = 0]
x⊗n y = (x× y) mod n, [12⊗5 7 = (12×7) mod 5 = 4]

where +, − and × are the integer operations. The operations ⊕n, ⊖n and ⊗n

are called the modulo-n addition, modulo-n subtraction, and modulo-n

multiplication. The integer n is called the modulus.
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Properties of Modulo n Operations

Proposition 22

Let n > 1 be the modulus, Zn = {0,1, · · · ,(n−1)}.

Commutative laws:

x⊕n y = y⊕n x , x⊗n y = y⊗n x .

Associative laws:

(x⊕n y)⊕n z = x⊕n (y⊕n z)

(x⊗n y)⊗n z = x⊗n (y⊗n z).

Distribution law:

z⊗n (x⊕n y) = (z⊗n x)⊕n (z⊗n y).
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Properties of Modulo n Operations

Proof of Proposition 22

Commutative laws: x⊕n y = y⊕n x , x⊗n y = y⊗n x .
Proof: By definition and the commutative lows of integer addition and

multiplication.

Associative laws:

(x⊕n y)⊕n z = x⊕n (y⊕n z)

(x⊗n y)⊗n z = x⊗n (y⊗n z).

Proof: By definition and the associative lows of integer addition and

multiplication.

Distribution law: z⊗n (x⊕n y) = (z⊗n x)⊕n (z⊗n y).
Proof: By definition and the distribution low of integer addition and

multiplication.
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The Multiplicative Inverse

Definition 23

Let x ∈ Zn = {0,1, · · · ,n−1}. If there is an integer y ∈ Zn such that

x⊗n y =: (x× y) mod n = 1.

The integer y is called a multiplicative inverse of x , usually denoted x−1 (it is

unique if it exists).

Example 24

Let n = 15. Then 2 has the multiplicative inverse 8. But 3 does not have one.

Question 3

Which elements of Zn have a multiplicative inverse?

If x has a multiplicative inverse, is it unique?

If x has a multiplicative inverse, is there any efficient algorithm for

computing the inverse?
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gcd(a,b) as a Linear Combination of a and b

Lemma 25

There are two integers u and v such that gcd(a,b) = ua+ vb.

Proof.

Set a0 = a and a1 = b. By the EA, we have

a0 = q1 × a1 + a2

a1 = q2 × a2 + a3

...

at−2 = qt−1 × at−1 + at

at−1 = qt × at + 0

where ai 6= 0 for i ≤ t . Hence gcd(a,b) = at . Reversing back, we can express

at as a linear combination of a0 and a1.
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gcd(a,b) as a Linear Combination of a and b

Example 26

Find integers u and v such that gcd(66,35) = u66+ v35.

Solution 27

The extended Euclidean algorithm works as follows:

66 = 1×35+31 1 =−9×66+17×35

35 = 1×31+4 1 = 8×35−9×31

31 = 7×4+3 1 =−1×31+8×4

4 = 1×3+1 1 = 4−1×3

3 = 3×1+0

Hence u =−9 and v = 17.
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The Multiplicative Inverse

Proposition 28

If a ∈ Zn has a multiplicative inverse, then it is unique.

Proof.

Let b ∈ Zn and c ∈ Zn be two multiplicative inverses of a. Then a⊗n b = 1 and

a⊗n c = 1. By definition

a⊗n b⊗n c = (a⊗n b)⊗n c = 1⊗n c = c.

On the other hand, by the associativity and commutativity,

a⊗n b⊗n c = b⊗n (a⊗n c) = b⊗n 1 = b.

Hence b = c.
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The Multiplicative Inverse

Theorem 29

Let n > 1 be an integer. Then any a ∈ Zn has the multiplicative inverse modulo

n if and only if gcd(a,n) = 1.

Proof.

Suppose that gcd(a,n) = e 6= 1. Then n = en1 for some n1 < n. Then

n1⊗n a = 0. If there were an element b ∈ Zn such that a⊗n b = 1, then we

would have

n1⊗n (a⊗n b) = n1⊗1 = n1 mod n = n1

and

n1⊗n (a⊗n b) = (n1⊗n a)⊗n b = 0.

Hence, n1 = 0, a contradiction.

By Lemma 25, there are two integers u and v such that 1 = ua+ vn. Hence

au mod n = 1. Define a′ = u mod n. Then aa′ mod n = 1.
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Computing the Multiplicative Inverse

The algorithm

Let a ∈ Zn with gcd(a,n) = 1. Apply the Extended Euclidean Algorithm to a

and n to compute the two integers u and v such that 1 = ua+ vn. Then

u mod n is the inverse of a modulo n.

Example 30

Compute the inverse 35−1 mod 66.

Solution 31

In Solution 27, we got

1 =−9×66+17×35.

Hence, 35−1 mod 66 = (17) mod 66 = 17.
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Finite Fields Zp

Theorem 32

Let p be a prime. Then every nonzero element in Zp has the multiplicative

inverse modulo p.

Definition 33

Let p be a prime. Then the triple (Zp,⊕p,⊗p) is called a finite field with p

elements.

Remarks

We will introduce finite fields in genera later.
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