Modular Arithmetic

Cunsheng Ding

HKUST, Hong Kong

February 14, 2017

э

A 3 >

Contents

- 2 Greatest Common Divisor
- 3 Euclidean Algorithm
- Modulo *n* Arithmetic
- 5 The multiplicative inverse modulo n

The Floor and Ceiling Function

Definition 1

The floor function $\lfloor x \rfloor$: The largest integer $\leq x$.

Example 2

$$\lfloor 3.99 \rfloor = 3. \ \lfloor 5/2 \rfloor = 2. \ \lfloor 3 \rfloor = 3.$$

Definition 3

The ceiling function $\lceil x \rceil$ **:** The smallest integer $\geq x$.

Example 4

$$[3.99] = 4. [5/2] = 3. [3] = 3.$$

Cunsheng Ding (HKUST, Hong Kong)

イロト イポト イヨト イヨト

Quotient and Remainder

Theorem 5 (Division Algorithm)

Let $b \neq 0$ be an integer and let a be any integer. Then there are two unique integers q and $0 \leq r < |b|$ such that a = qb + r.

Proof.

The proof is constructive. Define $\varepsilon_b = 1$ if b > 0 and $\varepsilon_b = -1$ if b < 0. Let $q = \lfloor a/b\varepsilon_b \rfloor$ and $r = a - q\varepsilon_b b$. It is easily checked that 0 < r < |b| and a = bq + r. The proof of the uniqueness of q and r with $0 \le r < |b|$ is left as an exercise.

Definition 6

The *q* and *r* in the proof above are the **quotient** and **remainder** when *a* is divided by *b*. We write $r = a \mod b$.

If $a \mod b = 0$, b is called a **divisor** or **factor** of a. In this case, we say that a is divisible by b or b divides a.

イロト イポト イヨト イヨト

Quotient and Remainder

Example 7

73 mod 7 = 3 and $-11 \mod 7 = 3$.

Definition 8

A **prime** is a positive integer n > 1 with only two positive divisors 1 and n.

Definition 9

A **common divisor** of two integers *a* and *b* is a divisor of both *a* and *b*.

Example 10

60 and 24 have the positive common divisors 1, 2, 3, 4, 6, 12.

何とくほとくほど

The Greatest Common Divisor

Definition 11

The greatest common divisor (GCD) of two integers a and b, denoted by gcd(a,b), is the largest among all the common divisors of a and b.

Example 12

gcd(60, 24) = 12, as all the positive common divisors of 60 and 24 are 1,2,3,4,6,12.

Proposition 13

$$\gcd(b,a) = \gcd(-b,a) = \gcd(b,-a) = \gcd(-b,-a) = \gcd(a,b).$$

Because of this proposition, we will consider only the case that $a \ge 0$ and $b \ge 0$ in the sequel.

イロト 不得 トイヨト イヨト 二臣

The Greatest Common Divisor

Proposition 14

Let a and b be two integers such that $(a,b) \neq (0,0)$. Then gcd(b,a) must exist.

Proof.

The total number of positive common divisors of *a* and *b* is at most $\max\{|a|, |b|\}$.

Question 1

Is there any efficient algorithm for computing gcd(a, b) for any two positive integers a and b?

Answer

Yes, the Euclidean algorithm.

Computing gcd(a, b) Recursively

Lemma 15

Let $b \neq 0$. Then $gcd(a, b) = gcd(b, a \mod b)$.

Proof.

Note that a = qb + r, where $r = a \mod b$ is the remainder.

By this equation, any common divisor of a and b must be a common divisor of b and r. Conversely, any any common divisor of b and r must be a common divisor of a and b. Hence a and b have the same set of common divisors as b and r. Hence, the two sets of integers have the same GCD.

Remark

A recursive application of this lemma gives an efficient algorithm for computing the gcd(a, b), which is called the **Euclidean algorithm**.

イロト イポト イヨト イヨト

Euclidean Algorithm

Example: Find gcd(66, 35).

Algorithm: It works as follows and stops when the remainder becomes 0:

66	=	$1 \times 35 + 31$	gcd(35,31)
35	=	$1 \times 31 + 4$	gcd(31,4)
31	=	$7 \times 4 + 3$	gcd(4,3)
4	=	$1 \times 3 + 1$	gcd(3,1)
3	=	3×1+0	gcd(1,0)

Hence by the lemma in the previous page

gcd(66,35) = gcd(35,31) = gcd(31,4) = gcd(4,3) = gcd(3,1) = gcd(1,0) = 1.

Euclidean Algorithm

Remarks

- No need to read and explain this code. The example in the previous slide is clear enough.
- The time complexity is $O(\log |b| \times [\log |b| + \log |a|]^2)$

伺下 イヨト イヨト

The Least Common Multiple

Definition 16

The **least common multiple** of two integers *a* and *b*, denoted by lcm(a, b), is the smallest positive integer that is divisible by both *a* and *b*.

Example 17

Let
$$a = 24 = 3 \times 2^3$$
 and $b = 15 = 3 \times 5$. Then $lcm(a, b) = 3 \times 5 \times 2^3 = 120$.

Question 2

How do we compute the least common multiple lcm(a, b) efficiently?

御 とう ぼう うまつ

Computing the Least Common Multiple

Lemma 18

Let a and b be integers. Then

$$\operatorname{lcm}(a,b) = \frac{|ab|}{\operatorname{gcd}(a,b)}.$$

An approach

Use the lemma above. As long as we have an efficient algorithm for computing gcd(a, b), we have an efficient one for computing the lcm(a, b).

Useful Results Regarding gcd(A, B)

Proposition 19

Let a, m and n be positive integers. Then

$$gcd(a^m - 1, a^n - 1) = a^{gcd(m,n)} - 1.$$

Proposition 20

Let a, m and n be positive integers. Define d = gcd(m, n). Then

$$gcd(a^{m}+1, a^{n}-1) = \begin{cases} 1, & \text{if } n/d \text{ is odd and a is even,} \\ 2, & \text{if } n/d \text{ is odd and a is odd,} \\ a^{d}+1, & \text{if } n/d \text{ is even.} \end{cases}$$

The proofs of these two propositions are left as exercises for those who look for challenging problems.

🗇 🕨 🖉 🖢 🖌 🖉 🕨

- 32

Modulo *n* Arithmetic

Definition 21

Let n > 1 be an integer. We define

$$\begin{array}{rcl} x \oplus_n y &=& (x+y) \bmod n, & [12 \oplus_5 7 &=& (12+7) \bmod 5 = 4] \\ x \oplus_n y &=& (x-y) \bmod n, & [12 \oplus_5 7 &=& (12-7) \bmod 5 = 0] \\ x \otimes_n y &=& (x \times y) \bmod n, & [12 \otimes_5 7 &=& (12 \times 7) \bmod 5 = 4] \end{array}$$

where +, - and \times are the integer operations. The operations \oplus_n , \ominus_n and \otimes_n are called the modulo-*n* addition, modulo-*n* subtraction, and modulo-*n* multiplication. The integer *n* is called the **modulus**.

Properties of Modulo n Operations

Proposition 22

Let n > 1 be the modulus, $\mathbb{Z}_n = \{0, 1, \dots, (n-1)\}.$

Commutative laws:

$$x \oplus_n y = y \oplus_n x, \quad x \otimes_n y = y \otimes_n x.$$

Associative laws:

$$(x \oplus_n y) \oplus_n z = x \oplus_n (y \oplus_n z)$$
$$(x \otimes_n y) \otimes_n z = x \otimes_n (y \otimes_n z).$$

Distribution law:

$$z \otimes_n (x \oplus_n y) = (z \otimes_n x) \oplus_n (z \otimes_n y).$$

Cunsheng Ding (HKUST, Hong Kong)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ●

Properties of Modulo n Operations

Proof of Proposition 22

- Commutative laws: x ⊕_n y = y ⊕_n x, x ⊗_n y = y ⊗_n x.
 Proof: By definition and the commutative lows of integer addition and multiplication.
- Associative laws:

$$(x \oplus_n y) \oplus_n z = x \oplus_n (y \oplus_n z)$$
$$(x \otimes_n y) \otimes_n z = x \otimes_n (y \otimes_n z).$$

Proof: By definition and the associative lows of integer addition and multiplication.

Distribution law: *z* ⊗_n(*x* ⊕_n *y*) = (*z* ⊗_n *x*) ⊕_n(*z* ⊗_n *y*).
 Proof: By definition and the distribution low of integer addition and multiplication.

イロト イ押ト イヨト イヨト

The Multiplicative Inverse

Definition 23

Let $x \in \mathbb{Z}_n = \{0, 1, \cdots, n-1\}$. If there is an integer $y \in \mathbb{Z}_n$ such that

 $x \otimes_n y =: (x \times y) \mod n = 1.$

The integer y is called a *multiplicative inverse* of x, usually denoted x^{-1} (it is unique if it exists).

Example 24

Let n = 15. Then 2 has the multiplicative inverse 8. But 3 does not have one.

Question 3

- Which elements of Z_n have a multiplicative inverse?
- If x has a multiplicative inverse, is it unique?
- If x has a multiplicative inverse, is there any efficient algorithm for computing the inverse?

gcd(a, b) as a Linear Combination of a and b

Lemma 25

There are two integers u and v such that gcd(a,b) = ua + vb.

Proof.

Set $a_0 = a$ and $a_1 = b$. By the EA, we have

$$a_0 = q_1 \times a_1 + a_2$$

 $a_1 = q_2 \times a_2 + a_3$
 \vdots
 $a_{t-2} = q_{t-1} \times a_{t-1} + a_t$
 $a_{t-1} = q_t \times a_t + 0$

where $a_i \neq 0$ for $i \leq t$. Hence $gcd(a, b) = a_t$. Reversing back, we can express a_t as a linear combination of a_0 and a_1 .

gcd(a, b) as a Linear Combination of a and b

Example 26

Find integers u and v such that gcd(66,35) = u66 + v35.

Solution 27

The extended Euclidean algorithm works as follows:

66	=	$1 \times 35 + 31$	$1 = -9 \times 66 + 17 \times 35$
35	=	$1 \times 31 + 4$	$1 = 8 \times 35 - 9 \times 31$
31	=	$7 \times 4 + 3$	$1 = -1 \times 31 + 8 \times 4$
4	=	$1 \times 3 + 1$	$1 = 4 - 1 \times 3$
3	=	3 × 1 + 0	

Hence $\mu = -9$ and v = 17.

伺き くほき くほう

The Multiplicative Inverse

Proposition 28

If $a \in \mathbb{Z}_n$ has a multiplicative inverse, then it is unique.

Proof.

Let $b \in \mathbb{Z}_n$ and $c \in \mathbb{Z}_n$ be two multiplicative inverses of a. Then $a \otimes_n b = 1$ and $a \otimes_n c = 1$. By definition

$$a \otimes_n b \otimes_n c = (a \otimes_n b) \otimes_n c = 1 \otimes_n c = c.$$

On the other hand, by the associativity and commutativity,

$$a \otimes_n b \otimes_n c = b \otimes_n (a \otimes_n c) = b \otimes_n 1 = b.$$

Hence b = c.

何とくほとくほど

The Multiplicative Inverse

Theorem 29

Let n > 1 be an integer. Then any $a \in \mathbb{Z}_n$ has the multiplicative inverse modulo n if and only if gcd(a, n) = 1.

Proof.

Suppose that $gcd(a, n) = e \neq 1$. Then $n = en_1$ for some $n_1 < n$. Then $n_1 \otimes_n a = 0$. If there were an element $b \in \mathbb{Z}_n$ such that $a \otimes_n b = 1$, then we would have

$$n_1 \otimes_n (a \otimes_n b) = n_1 \otimes 1 = n_1 \mod n = n_1$$

and

$$n_1\otimes_n(a\otimes_n b)=(n_1\otimes_n a)\otimes_n b=0.$$

Hence, $n_1 = 0$, a contradiction.

By Lemma 25, there are two integers u and v such that 1 = ua + vn. Hence $au \mod n = 1$. Define $a' = u \mod n$. Then $aa' \mod n = 1$.

Computing the Multiplicative Inverse

The algorithm

Let $a \in \mathbb{Z}_n$ with gcd(a, n) = 1. Apply the Extended Euclidean Algorithm to a and n to compute the two integers u and v such that 1 = ua + vn. Then $u \mod n$ is the inverse of $a \mod n$.

Example 30

Compute the inverse 35^{-1} mod 66.

Solution 31

In Solution 27, we got

$$1 = -9 \times 66 + 17 \times 35.$$

Hence, $35^{-1} \mod 66 = (17) \mod 66 = 17$.

Finite Fields \mathbb{Z}_p

Theorem 32

Let p be a prime. Then every nonzero element in \mathbb{Z}_p has the multiplicative inverse modulo p.

Definition 33

Let *p* be a prime. Then the triple $(\mathbb{Z}_p, \oplus_p, \otimes_p)$ is called a *finite field* with *p* elements.

Remarks

We will introduce finite fields in genera later.

伺下 イヨト イヨト