Design Issues of Block Ciphers

The objectives of this part is to show certain design issues of block ciphers.

Block Ciphers and Stream Ciphers

A one-key cipher is a 5-tuple $(\mathcal{M}, \mathcal{C}, \mathcal{K}, E_k, D_k)$, where

- $\mathcal{M}, \mathcal{C}, \mathcal{K}$ are respectively the plaintext space, ciphertext space, and key space;
- Any $k \in \mathcal{K}$ could be the encryption and decryption key; and
- E_k and D_k are encryption and decryption transformations with $D_k(E_k(m)) = m$ for each $m \in \mathcal{M}$.

Classification: For any message m, if the corresponding ciphertext $c := E_k(m)$ is time-invariant, the one-key cipher is called a block cipher. Otherwise, it is called a stream cipher.

An Example of Block Ciphers

- $\mathcal{M} = \mathcal{C} = \{0, 1\}^*$.
- $\mathcal{K} = \{0, 1\}^{256}$.
- A message is divided into blocks m_i , each with 256 bits. Encryption is then done block by block:

$$E_k(m_i) = m_i \oplus k.$$

• Each ciphertext block c_i (i.e., $E_k(m_i)$) is decrypted:

$$D_k(c_i) = c_i \oplus k.$$

Question: Why this is a block cipher?

Question: Is this block cipher secure? Why?

Remark: Examples of stream ciphers will be seen later.

Design Issues of One-key Block Ciphers

A one-key $(\mathcal{M}, \mathcal{C}, \mathcal{K}, E_k, D_k)$:

- You have to design all the five building blocks.
- The security of your cipher should depend only on the confidentiality of the key k. (We assume that the encryption algorithm E_k and decryption algorithm D_k are known to the enemy.)
- It should be secure in the computational sense.
- It should be fast in hardware and software.

Question: How do you design a one-key cipher meeting these requirements?

Linear Functions

Notation: Let F_2 denote the set $\{0, 1\}$ and let

$$\mathbf{F}_2^n = \{(x_1, x_2, \cdots, x_n) | x_i \in \mathbf{F}_2\}.$$

We always associate \mathbf{F}_2^n with the bitwise exclusive-or operation, also denoted +.

Linear functions: Let f be a function from \mathbf{F}_2^n to \mathbf{F}_2^m , where n and m are positive integers. f is called **linear** if

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbf{F}_2^n$.

Example: Let $f(x) = x_1 + x_2 + \cdots + x_n$, where

$$x = (x_1, \cdots, x_n) \in \mathbf{F}_2^n.$$

Then f is a linear function from \mathbf{F}_2^n to \mathbf{F}_2 . Note that + denotes the modulo-2 addition.

Linear Functions

Linear function by circular shift: Let *i* be any positive integer. Define a function RS_i from \mathbf{F}_2^n to \mathbf{F}_2^n by

 $RS_{i}((x_{0}, x_{1}, \dots, x_{n-1}))$ = $(x_{(0-i) \mod n}, x_{(1-i) \mod n}, \dots, x_{(n-1-i) \mod n})$ for any $x = (x_{0}, x_{1}, \dots, x_{n-1}) \in \mathbf{F}_{n}$.

Example:

 $RS_1((x_0, x_1, \cdots, x_{n-1})) = (x_{n-1}, x_0, x_1, \cdots, x_{n-2})$

Lemma: RS_i is linear with respect to the bitwise exclusiveor.

Proof: Trivial.

Nonlinear Functions

Definition: Any function that is not linear is called a nonlinear function.

Example: The following function from \mathbf{F}_2^4 to \mathbf{F}_2 is nonlinear:

 $f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4 + x_1 x_2 x_3 x_4$ is nonlinear.

Remark: The degree of the Boolean function indicates the degree of nonlinearity.

Shannon's First Design Idea: Diffusion

Diffusion: Each plaintext block bit or key bit affects many bits of the ciphertext block.

Example: Suppose that x, y and k all have 8 bits. If

$$y_{1} = f_{1}(x_{1}, x_{2}, k_{1}, k_{2})$$

$$y_{2} = f_{2}(x_{2}, x_{3}, k_{2}, k_{3})$$

$$y_{3} = f_{3}(x_{3}, x_{4}, k_{3}, k_{4})$$

$$y_{4} = f_{4}(x_{4}, x_{5}, k_{4}, k_{5})$$

$$y_{5} = f_{5}(x_{5}, x_{6}, k_{5}, k_{6})$$

$$y_{6} = f_{6}(x_{6}, x_{7}, k_{6}, k_{7})$$

$$y_{7} = f_{7}(x_{7}, x_{8}, k_{7}, k_{8})$$

$$y_{8} = f_{8}(x_{8}, x_{1}, k_{8}, k_{1})$$

where the f_i are some functions, then it has very bad diffusion, because each plaintext bit or key bit affects only two bits in the output block y.

8

Shannon's First Design Idea: Diffusion

Diffusion: Each plaintext block bit or key bit affects many bits of the ciphertext block.

Example: Suppose that x, y and k all have 8 bits. If

 $= x_1 + x_2 + x_3 + x_4 + k_1 + k_2 + k_3 + k_4$ y_1 $= x_2 + x_3 + x_4 + x_5 + k_2 + k_3 + k_4 + k_5$ y_2 $= x_3 + x_4 + x_5 + x_6 + k_3 + k_4 + k_5 + k_6$ y_3 $= x_4 + x_5 + x_6 + x_7 + k_4 + k_5 + k_6 + k_7$ y_4 $= x_5 + x_6 + x_7 + x_8 + k_5 + k_6 + k_7 + k_8$ y_5 $= x_6 + x_7 + x_8 + x_1 + k_6 + k_7 + k_8 + k_1$ y_6 $= x_7 + x_8 + x_1 + x_2 + k_7 + k_8 + k_1 + k_2$ y_7 $= x_8 + x_1 + x_2 + x_3 + k_8 + k_1 + k_2 + k_3$ y_8

then it has very good diffusion, because each plaintext bit or key bit affects half of the bits in the output block y.

Shannon's Second Design Idea: Confusion

Confusion: Each bit of the ciphertext block has highly nonlinear relations with the plaintext block bits and the key bits.

Example: Suppose that x, y and k all have 8 bits. If

 $x_1 + x_2 + x_3 + x_4 + k_1 + k_2 + k_3 + k_4$ y_1 $x_2 + x_3 + x_4 + x_5 + k_2 + k_3 + k_4 + k_5$ y_2 = $= x_3 + x_4 + x_5 + x_6 + k_3 + k_4 + k_5 + k_6$ y_3 $y_4 = x_4 + x_5 + x_6 + x_7 + k_4 + k_5 + k_6 + k_7$ $= x_5 + x_6 + x_7 + x_8 + k_5 + k_6 + k_7 + k_8$ y_5 $y_6 = x_6 + x_7 + x_8 + x_1 + k_6 + k_7 + k_8 + k_1$ $x_7 + x_8 + x_1 + x_2 + k_7 + k_8 + k_1 + k_2$ y_7 = $x_8 + x_1 + x_2 + x_3 + k_8 + k_1 + k_2 + k_3$ = y_8

then it has bad confusion, as they are linear relations.

Remark: Nonlinear functions are responsible for confusion.

An Important Design Paradigm

Iteration: In order to design E_k and D_k such that

- they have good diffusion and confusion with respect to the secret key bits and message block bits, and
- 2. they are fast in software and hardware,

we could design a simple function f_k and define

$$E_k(m) = f_{k_{16}}(f_{k_{15}}(\cdots f_{k_2}(f_{k_1}(m))\cdots))$$

where k_1, k_2, \cdots and k_{16} are binary string computed from the secret key k according to an algorithm.

The Finite Field GF(2⁸)

Primitive polynomial: $p(x) = x^8 + x^4 + x^3 + x + 1 \in GF(2)[x]$, which is irreducible and has "other" properties.

- 1. Every element of $GF(2^8)$ is a polynomial: $a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_7 x^7 \in GF(2)[x].$
- 2. For any two elements,

$$\begin{array}{rcl} a(x) &=& a_0 + a_1 x + a_2 x^2 + \dots + a_7 x^7 \\ b(x) &=& b_0 + b_1 x + b_2 x^2 + \dots + b_7 x^7, \end{array}$$

the addition and multiplication are defined to be

$$a(x) + b(x) = \sum_{i=0}^{7} (a_i + b_i) x^i \in GF(2)[x]$$

and

$$a(x) \times b(x) = a(x)b(x) \mod p(x).$$

 x^{-1} has optimal nonlinerity.

12