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Problems with Traditional Public Key Encryption

Traditional public key encryption is based on digital certificate, and
is called certificate-based encryption (CBE).

The generation of key pairs, the issuing of digital certificates,
the publication of the digital certificates, and the management
of all these requires a dedicated secure infrastructure.

Such an infrastructure is expensive and complex, and does not
scale well to large sizes, and does not easily extend to manage
parties’ attributes, e.g., their roles and rights.

IBE offers an option with certain advantages in some
applications.
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What is Identity-Based Encryption?

It is a public key encryption scheme.

Public key: any valid string, which uniquely identifies a user
and is chosen by the encrypting party

Private key: it can be computed only by a trusted third party,
called the key server or private key generator.
– This need not be done at the same time when the public
key is chosen.

The trusted third party will release the private key, only to
those parties who provide evidence of their right to have it.

Parties who are issued with the private key can use it to
decrypt the content encrypted with the public key.
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Advantages of IBE over Certificate-Based Encryption
(CBE)

Eliminate the need for digital certificate and thus certification
authorities

Simplify the key management in some aspects
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IBE Procedure

1 Alice encrypts the email using Bob’s e-mail address, e.g.
bob@bob.com, as the public key. Then she sends the
ciphertext and the public key to Bob.

2 When Bob receives the message, he contacts the key server,
asking the server to distribute the private key to him.

3 The key server contacts a directory or other external
authentication source to authenticate Bob’s identity and
establish any other policy elements.
After authenticating the Bob, the key server then returns his
private key, through a secure channel.

4 After receiving the private key, Bob can decrypt the message.
This private key can be used to decrypt future messages
encrypted with the same public key.
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The IBE Framework

Setup:

Run by the Private Key Generator (PKG) one time for creating the whole

IBE environment.
Output: Public system parameters P & a master-key Km which is know
only to the PKG.

Extraction:
The process which the PKG generates the private key for user.
Input: system parameters P, master-key Km and any arbitrary ID (i.e.,
the public key)
Output: private key d

Encryption:
Input: system parameters P, ID of receiver and a plaintext message M

Output: ciphertext C

Decryption:
Input: system parameters P, private key d issued by the PKG, and the
ciphertext C

Output: plaintext message M
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Comparisons of traditional CBE and IBE

Features Certificate Based PKI ID based PKI

Private key generation By user or Certificate Au-

thorities

By Private Key Generator

(PKG)

Key certification Yes No

Key distribution Requires an integrity pro-

tected channel for distribut-

ing a new public key from a

user to his CA

Requires an integrity and

privacy protected channel

for distributing a new pri-

vate key from the PKG to its

owner

Public key retrieval From public directory or key

owner

On-the-fly based on owner’s

identifier
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Notation

Notation

m, n Natural number

p, q Primes

Zp Finite ring of integer modulo p, where p is prime

Zn Finite ring of integer modulo n

Z
∗

p Cyclic group of p − 1 elements

Z
∗

n Group of units of Zn

Unless otherwise specified:

Only integers are considered.

All variables are assumed to be natural number.
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Congruence modulo n

Let a, b be two integers (possibly negative):

Definition

The congruence modulo n relation, a ≡ b (mod n) means
n | (a − b).

Note

The relation ≡ is an equivalence relation.

Example

8 ≡ 18 ≡ 28 ≡ −2 (mod 10)

0 ≡ n (mod n)
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Basic Properties

Properties

If x ≡ a (mod n) and y ≡ b (mod n),

x ± y ≡ a ± b (mod n)

xy ≡ ab (mod n)

xk≡ ak (mod n)

Note

By division algorithm, for all m ∈ N, there is a unique integer r s.t.

1 m ≡ r (mod n)

2 0 ≤ r < n

We denoted such r , namely the remainder, by m mod n.
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Finite ring of integers modulo n

Definition

Zn is defined such that the following are all satisfied:

1 Zn = {0, 1, 2, . . . , n − 1} with two operations +n and ·n.

2 Addition of x , y ∈ Zn , denoted by x +n y , is the unique
element z ∈ Zn s.t. x + y ≡ z (mod n).

3 Multiplication of x , y ∈ Zn, denoted by x ·n y , is the unique
element z ∈ Zn s.t. x · y ≡ z (mod n).

4 Additive identity 0 and multiplicative identity 1 exist.

5 For each element, its additive inverse exists.

6 Associative, commutative and distributive law holds.

In case of no ambiguity, the subscript n of operators under Zn is
omitted.
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Finite ring of integers modulo n

Let x ∈ Zn and the operations under Zn.

Definition

The additive inverse of x , denoted by −x , is the unique element
y ∈ Zp s.t. x + y = 0.

Let k ∈ N,

Definition

The k-th power of x ∈ Zn is defined as xk := x · x · · · x
︸ ︷︷ ︸

k-times

.

The zero-th power is defined as x0 := 1.

Example

Under Z10, −2 = 8 and 73 = 7 · 7 · 7 = 9 · 7 = 3.
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Finite ring of integers modulo n

Let x ∈ Zn be a non-zero element.

Definition

x is said to be a unit iff ∃y ∈ Zn, xy = 1.
y is called the multiplicative inverse of x and is denoted by x−1.
Z
∗

n is the group of units of Zn, namely the set of units under ·.

Example

Under Z11, 2−1 = 6, since 2 · 6 ≡ 12 ≡ 1 (mod 11).

Fact

Z
∗

p is the cyclic group of the first p − 1 integers.

Z
∗

n has φ (n) elements, where φ is the Euler’s phi function.
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Introduction – Solving linear equation in Zn

Warning

Unlike additive inverse, multiplicative inverse may not always exist.
For example, 2 ∈ Z4 has no multiplicative inverse.

When does an element x ∈ Zn have an multiplicative inverse?

If it exists, how do we find it?

Consequence of Euclidean algorithm

For any given k, m ∈ Zn,

1 The equation kx = m has solution(s) iff gcd (k, n) | m.

2 The number of solutions is equal to gcd (k, n).

Therefore, m ∈ Z
∗

n ⇐⇒ gcd (m, n) = 1.
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Finding square root or solving quadratic equation?

Problem

Given m ∈ Zn, can you solve the equation x2 = m?

Clearly, the equation x2 ≡ −1 (mod 3) has no solution.

Is there an easy way to determine whether it has a solution?
(This problem is important for our application in the sequel.)

If a solution exists, anyway to solve it other than exhaustion?
(This problem will not be discussed in the sequel.)
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Quadratic Residues

Let p be a prime,

Definition

The set of quadratic residues modulo p, Qp :=
{
x2 : x ∈ Z

∗

p

}
.

The set of quadratic nonresidues modulo p, Qp := Z
∗

p \ Qp.

Let a ∈ Z
∗

p,

Definition

a is said to be a quadratic residue modulo p iff a ∈ Qp.
a is a quadratic nonresidue modulo p iff a ∈ Qp.

W.K. Chiu, C. Ding, C.L. Yu Cocks’ IBE Algorithm



Introduction to IBE
Number theory

Cocks’ IBE algorithm
Practical Aspects

Definitions and properties
Finite ring
Quadratic Reciprocity

Quadratic Residues

Let p be a prime,

Definition

The set of quadratic residues modulo p, Qp :=
{
x2 : x ∈ Z

∗

p

}
.

The set of quadratic nonresidues modulo p, Qp := Z
∗

p \ Qp.

Let a ∈ Z
∗

p,

Definition

a is said to be a quadratic residue modulo p iff a ∈ Qp.
a is a quadratic nonresidue modulo p iff a ∈ Qp.

W.K. Chiu, C. Ding, C.L. Yu Cocks’ IBE Algorithm



Introduction to IBE
Number theory

Cocks’ IBE algorithm
Practical Aspects

Definitions and properties
Finite ring
Quadratic Reciprocity

Example

In Z5, −1 is a quadratic residue, since 32 = 4.
−1 ∈ Z7 is a quadratic nonresidue, by exhaustion.
2 ∈ Z7 is a quadratic residue, since 32 = 2.

Note

Since gcd (n, p) 6= 1 =⇒ gcd (n, p) = p.
The set Zp is partitioned into three disjoint sets, Qp, Qp, {0}.
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Legendre Symbol

If a ∈ Z
∗

p, we define

(
a

p

)

=

{

1 if a ∈ Qp

−1 if a ∈ Qp

Define

(
0

p

)

= 0

If a ≥ p, we define

(
a

p

)

=

(
a mod p

p

)
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Jacobi Symbol

Let n = pd1
1 · · · pdm

m where all pi ’s are pairwise distinct primes

If a ∈ Z
∗

n, we define
(a

n

)

=

m∏

k=1

(
a

pk

)dk

If gcd (a, n) 6= 1, define
(a

n

)

= 0.

If a ≥ n, we define
(a

n

)

=

(
a mod n

n

)
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Properties of Legendre Symbol

Let p and q be an odd prime, p 6= q and a, b ∈ Z
∗

p.

1

(
a

p

)

= 1 ⇐⇒ a ∈ Qp and

(
a

p

)

= −1 ⇐⇒ a ∈ Qp

2

(
ab

p

)

=

(
a

p

)(
b

p

)

3 (Euler’s criterion) a(p−1)/2 ≡ 1 (mod p) ⇐⇒

(
a

p

)

= 1

4

(
−1

p

)

= 1 ⇐⇒ p ≡ 1 (mod 4)

5 (Quadratic Reciprocity Law)

(
p

q

)

= (−1)
p−1

2
·
q−1

2

(
q

p

)

and

(
2

p

)

=

{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)
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Properties of Legendre Symbol

Let p and q be an odd prime, p 6= q and a, b ∈ Z
∗

p.

1

(
a

p

)

= 1 ⇐⇒ a ∈ Qp and

(
a

p

)

= −1 ⇐⇒ a ∈ Qp

2

(
ab

p

)

=

(
a

p

)(
b

p

)

3 (Euler’s criterion) a(p−1)/2 ≡ 1 (mod p) ⇐⇒

(
a

p

)

= 1

4

(
−1

p

)

= 1 ⇐⇒ p ≡ 1 (mod 4)

5 (Quadratic Reciprocity Law)

(
p

q

)

= (−1)
p−1

2
·
q−1

2

(
q

p

)

and

(
2

p

)

=

{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)
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Properties of Jacobi Symbol

Let a, b, m, n ∈ N

1

( a

mn

)

=
( a

m

)(a

n

)

2

(
1

n

)

= 1

3

(
ab

mn

)

=
( a

m

)( b

m

)(a

n

)(b

n

)

4

(
−1

n

)

= (−1)(n−1)/2

5 Quadratic Reciprocity Law still holds.
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Example

Example

Is 69 a quadratic residue modulo 389 (prime)?
(

69

389

)

=

(
3

389

)(
23

389

)

=

(
389

3

)(
389

23

)

=

(
2

3

)(
21

23

)

= (−1)

(
−2

23

)

= (−1) (−1)

(
2

23

)

= 1

Be careful

The Jacobi symbol cannot give information whether a number is
quadratic residue or not.

By definition

(
8

9

)

=

(
8

3

)2

=

(
2

3

)2

= 1.

However, there is no x ∈ Z9 such that x2 = 8.
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The Quadratic Residuosity Problem

Definition: Given an odd integer n and a ∈ Jn (Jn is the set of all
a ∈ Z

∗

n having Jacobi symbol +1), decide whether or not a is
quadratic residue modulo n.

Comments: If n is a prime, the quadratic residuosity problem is
easy, as there is a polynomial time algorithm for the computation

of
(a

n

)

, which can determine whether a is a quadratic residue

modulo n.

It is suspected to be a hard problem when n is an odd composite
integer unless the factorization of n is known. Hence, the difficulty
of this problem depends that of the factorization problem.
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Setup

Private parameters:

Two prime numbers p, q

p ≡ q ≡ 3 (mod 4)
Only known to the Private Key Generator (PKG)

Public parameters:

n = p · q

H : {0, 1}∗ → Jn, where Jn =
{

x ∈ Z
∗

n :
(x

n

)

= 1
}

.
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Example

Let p = 7 and q = 11 such that p, q ≡ 3 (mod 4)

n = p · q = 77 and |Z∗

n| = 60

Z
∗

n = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23,

24, 25, 26, 27, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47,

48, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72,

73, 74, 75, 76}

Jn = {i ∈ Z
∗

n : ( i
n
) = +1} = {1, 4, 6, 9, 10, 13, 15, 16, 17, 19, 23,

24, 25, 36, 37, 40, 41, 52, 53, 54, 58, 60, 61, 62, 64, 67, 68, 71, 73, 76}

W.K. Chiu, C. Ding, C.L. Yu Cocks’ IBE Algorithm



Introduction to IBE
Number theory

Cocks’ IBE algorithm
Practical Aspects

Setup
Extraction
Encryption
Decryption
Decryption

Extraction of the Private Key

User contacts PKG through secure channel for his/her private key
→ PKG extracts this key from knowledge of the user’s identity and
its privately-known parameters p and q.

1 Compute H (ID) = a, such that
(a

n

)

= 1

2 Compute r = a
(n+5)−(p+q)

8 (mod n), where r is the private key
of the user.
r must satisfy r2 ≡ ±a (mod n) depending on which of a or
−a is a square modulo n. (See the proof in the next page.)

3 Transmit r , the private key, to the user.
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Proof: a or −a is a quadratic residue modulo n

(a

n

)

=

(
a

p

)(
a

q

)

, since
(a

n

)

= 1, there are two cases possible.

Case 1:

(
a

p

)

=

(
a

q

)

= 1

Thus a is a quadratic residue modulo both p and q. This
means that a is also a quadratic residue modulo n.

Case 2:

(
a

p

)

=

(
a

q

)

= −1

Now

(
−a

p

)

=

(
a

p

)(
−1

p

)

= (−1) (−1) = 1.

Hence,−a ∈ Qp Similarly, −a ∈ Qq.
This means that −a is also a quadratic residue modulo n.
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Example

p = 7, q = 11, n = 77

Consider an arbitrary ID such that H(ID) = 4

The PKG computes

r = a
(n+5)−(p+q)

8 mod n ≡ 4
(77+5)−(7+11)

8 ≡ 48 = 9 (mod 77)

Here, r2 = 92 ≡ 4 (mod 77)
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Encryption

Given an m-bit plaintext message string M = (x1 · · · xm), and a
secure public Hash function H ()

1 Encode each bit xi of the m-bit plaintext message string
M = (x1 · · · xm) as either +1 or −1

2 Compute H (ID) = a, such that
(a

n

)

= 1

3 Choose values t1, t2 at random modulo n, such that t1 6= t2

and

(
t1

n

)

=

(
t2

n

)

= xi .

4 Compute si ,1 = (t1 + at−1
1 ) mod n and

si ,2 = (t2 − at−1
2 ) mod n

5 Use 〈si ,1, si ,2〉 to represent the plaintext bit xi
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Example

Consider plaintext message string M = (1, 0) encoded as
(+1,−1)
First bit, x1 = +1
(To simplified this example, only s1,1 is computed)

Choose t = 10 since

(
10

77

)

= 1

Compute
s1,1 = (t + at−1) mod n ≡ 10 + 4 · 10−1 ≡ 10 + 4 · 54 ≡ 72
(mod 77)

Second bit, x2 = −1
(To simplified this example, only s2,1 is computed)

Choose t = 20 since

(
20

77

)

= −1

Compute
s2,1 ≡ (t + at−1) mod n = 20 + 4 · 20−1 ≡ 20 + 4 · 27 ≡ 51
(mod 77)W.K. Chiu, C. Ding, C.L. Yu Cocks’ IBE Algorithm
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Decryption

Given the private key r , and the encrypted message.
If r2 ≡ a (mod n), set y = si ,1. Otherwise y = si ,2.

The plaintext bit xi can be recovers from (y + 2r) mod n.

xi =

(
y + 2r

n

)

Decryption will fail iff
(

1 + rt−1

n

)

= 0 ⇐⇒ gcd
(
1 + rt−1, n

)
6= 1,

where t = t1 if r2 ≡ a (mod n) and t = t2 otherwise.
Since p and q are fairly large primes, the probability of such
an event happening is quite low.

Remark: See the next slide for details.
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Proof of the Correctness of Decryption

We assume that r2 ≡ a (mod n), and have then

(
y + 2r

n

)

=

(
si ,1 + 2r

n

)

=

(

t1 + at−1
1 + 2r

n

)

=

(

t1(1 + r2t−2
1 + 2rt−1

1 )

n

)

=

(
t1

n

)(

(1 + rt−1
1 )2

n

)

=

(
t1

n

)

= xi if

(

(1 + rt−1
1 )2

n

)

6= 0.

The proof for the other case is similar and omitted here. That is
the case that r2 ≡ −a (mod n).

W.K. Chiu, C. Ding, C.L. Yu Cocks’ IBE Algorithm



Introduction to IBE
Number theory

Cocks’ IBE algorithm
Practical Aspects

Setup
Extraction
Encryption
Decryption
Decryption

Example of Successful Decryption

Given s1,1 = 72

Compute s1,1 + 2r ≡ 72 + 2 · 9 ≡ 13 (mod 77)

Calculate Jacobi symbol

(
s + 2r

n

)

=

(
13

77

)

= 1 = x1

Given s2,1 = 51

Compute s2,1 + 2r ≡ 51 + 2 · 9 ≡ 69 (mod 77)

Calculate Jacobi symbol

(
s + 2r

n

)

=

(
69

77

)

= −1 = x1
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Example of Unsuccessful Decryption

At encryption,

For second bit, if choose t = 12 since

(
12

77

)

= −1

Compute s2,1 ≡ t + at−1 ≡ 12 + 4 · 12−1 ≡ 12 + 4 · 45 ≡ 38
(mod 77)

At decryption,

Compute s2,1 + 2r ≡ 38 + 2 · 9 = 56 (mod 77)

Calculate Jacobi symbol

(
s + 2r

n

)

=

(
56

77

)

= 0 6= x1
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Security of Cock’s IBE

It can be shown that breaking the scheme is equivalent to solving
the quadratic residuosity problem, which is suspected to be hard
when the factorization of n is unknown.

A proof of this can be found in the second reference listed in the
last slide.
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Message Inflation

〈xi 〉 → 〈si,1, si,2〉
Single bit of the message → two elements of the group Z

∗

n

Message inflation by a factor of 2 log2 n

Much more bandwidth needed which may not be acceptable.
Thus, it is only suitable for small data packets like a session
key.

Sending the private key from the PKG to the decrypting party
requires a secure channel.

Authenticating the decrypting party may be a bottleneck in
the system.
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