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Abstract

Public-Key Certification methods were introduced to provide users with con-
fidence in the authenticity of the public keys they were using, while mitigating
the threat of man-in-the-middle attacks. Public-Key Infrastructures (PKIs)
were designed as mechanisms to manage certificates but they turned out to
be heavy to deploy and cumbersome to use. In order to bypass problems as-
sociated with conventional PKIs, Shamir introduced in 1984 the concept of
identity-based cryptography where a public key can be any binary string iden-
tifying its owner non-ambiguously. The motivation of this kind of scheme was
to simplify key management and remove the need of public-key certificates as
much as possible. Several practical solutions for identity based signatures (IBS)
have been devised since 1984 but finding a practical identity based encryption
scheme (IBE) remained an open challenge until 2001 when Cocks and Boneh-
Franklin independently proposed schemes using quadratic residues and bilinear
maps respectively. Since then, a lot of work has been done to extend the via-
bility and functionality of Boneh-Franklin’s scheme. In this report, we survey
Cocks’” and Boneh-Franklin’s schemes in detail and also review other schemes
based on Boneh-Franklin which try to demonstrate a stronger security model.
We conclude the report with some applications of IBE and the open problems
for the practicability of IBE.

Keywords: Identity-based Encryption, Private Key Generator, Quadratic Residues, Bilinear
Maps, Random Oracle



Chapter 1

Introduction

Identity-Based Encryption as an idea was first proposed in a seminal paper by
Adi Shamir in 1985. The paper introduced a novel idea of a cryptographic
scheme, which enabled any pair of users to communicate securely and to verify
each other’s signatures without the need to exchange private or public keys,
without keeping key directories and without using the services of a third party
[Sha&5]. Since then numerous schemes have been proposed which use the idea
of identity-based encryption.

1.1 Motivation

Identity-Based Encryption (IBE) is defined as a public-key encryption scheme
where any valid string, which uniquely identifies a user, is the public key of the
user.

The original motivation for identity-based cryptography was to simplify cer-
tificate management and thus eliminate the need for Certification Authorities.
In traditional Public-Key Infrastructure (PKI), a public-key certificate is re-
quired to bind the key to its user. However, certificates are not required in IBE
because each user has a unique identity to which they are intrinsically bound.
Instead, IBE requires a trusted central authority called a Private-Key Generator
(PKQG) for generation and distribution of private keys to registered users.

Thus, IBE removes several difficulties associated with traditional PKI such
as certificate lookup, lifecycle management, Certificate Revocation Lists and
cross-certification issues giving a greatly-simplified public-key encryption and

signature scheme.

The differences between Traditional PKI and IBE are summarized in Table

1

1.2 Working of IBE

A simplistic model of the way in which IBE functions is shown in Figure



Table 1.1: Differences between traditional PKI and IBE

Features Certificate based PKI ID based PKI
Private key By user or CA By PKG
generation

Key certification Yes No

Key distribution Requires an integrity

protected channel for

Requires an integrity and
privacy protected

channel for distri-
buting a new private key
from the TA to its owner

distributing a new public
key from a user to his CA

On-the-fly based
on owner’s identifier

Public key retrieval From public directory

or key owner

Escrow facility No (Unless Public key

generation is by CA) Yes

Secure communication takes place in three steps as follows:

1. Step 1: Alice encrypts the email using Bob’s e-mail address, bob@b. com,
as the public key.

2. Step 2: When Bob receives the message, he contacts the key server. The
key server contacts a directory or other external authentication source to
authenticate Bob’s identity and establish any other policy elements.

3. Step 3: After authenticating Bob, the key server then returns his private
key, with which Bob can decrypt the message. This private key can be
used to decrypt all future messages received by Bob.

Hey Server

o D 1|4

Encrypt with Public Kiey: Authenticates

“Name = bobi@b.com™
¢ -9
Send Secure E-rmail
Alice Bob

®
Privale Key for
bobiit. com

-

Figure 1.1: Identity-based Encryption



1.3 A Generic IBE scheme

After Shamir first proposed the idea of IBE in 1985, several researchers including
Shamir himself, published schemes for Identity-Based Signature (IBS) schemes
through the 90’s. However, a viable scheme for IBE remained an open problem
until 2001 when the first papers were independently published by Cocks [Coc01]
and Boneh and Franklin [BF01]. Both these schemes and several other schemes
which improve upon them are essentially made up of four algorithms as follows
[BEOT]:

e Setup: generates system parameters params which are made public to
all users in the system and a master-key skpxq which is known only to
the PKG.

e Extract: takes as input params, skpxc and any arbitrary ID and re-
turns a private key skyp corresponding to that ID.

e Encrypt: takes as input params, the I D of the receiver and a plaintext
message M and returns a ciphertext C.

e Decrypt: takes as input params, the private key skjp issued by the PKG
and the ciphertext C' and returns the plaintext message M.

We will study Cocks’ scheme in detail (Chapter followed by Boneh-
Franklin’s scheme (Chapter |3)).



Chapter 2

Cocks’ Method of
Quadratic Residues

Cocks’ identity-based cryptosystem uses quadratic residues modulo a large com-
posite integer [Coc0I]. The security of this scheme is related to the difficulty of
solving the quadratic residuosity problem [Coc01]. Understanding this scheme
requires some background in number theory, which we describe in section
We explain the actual scheme in Section[2.2]and then discuss its various practical
and security aspects in later sections.

2.1 Mathematical Background

2.1.1 Quadratic Residues

Definition 1 [MvOV97] Let a € Z;,. Then a is said to be a quadratic residue
modulo p if there exists an x € Z; such that 2?2 = a (mod p), else it is a
quadratic non-residue modulo p. Then, Q, denotes the set of all quadratic
residues modulo p and @ denotes the set of all quadratic non-residues mod-
ulo p.

2.1.2 Legendre Symbol
Definition 2 [MvOV97] Let p is an odd prime and a be an integer. The Leg-

endre symbol <%) is defined to be,
0, ifpla,
a
(p) = 1, Zfa S Qp,
-1, ifa€e@,

2.1.3 Jacobi Symbol

Definition 3 [MvOV97] Let n > 3 be odd with prime factorizationn = p7'ps? - -
Then the Jacobi symbol ( ) is defined to be,

a
n

0= G) G



Some of the properties of the Jacobi symbol are instrumental in the design
of Cocks’ algorithm. These are enumerated next.

Properties of Jacobi Symbol
1. (%):O,l or -1. Moreover, (%) =0 iff ged(a,n)# 1.

2. (%b) =(2) (%) Hence if a € Z7,, then (a—:) =1

3 (aw) = () (3)

(3=

5. (52) = (-1)"=Y/2 Hence (=) = —1if n =3 (mod 4).

2.2 Cocks’ IBE algorithm

Cocks’ IBE algorithm can also be broken down into the four distinct phases
described in [Kim]|. These are:

Setup:

The PKG chooses two primes p,q = 3 (mod 4). Here p and ¢ are private
parameters which are known only to PKG. Next, it computes n = p-q and makes
the value of n public to all users. The system also makes use of a universally
available secure hash function, H : {0,1}* — J, which maps any arbitrary
string to J,, the set of integers in Z whose Jacobi symbol is 1 [Coc01].

Extract:

Whenever, a user, say Alice, contacts the PKG for her private key, the PKG
extracts this key from knowledge of the user’s identity and its privately-known
parameters p and gq.

Knowing Alice’s identity, say ID 4, the PKG first computes H(ID4) = a
such that the Jacobi symbol (%) is +1. From the properties of the Jacobi sym-
bol and given an odd n and an a = 2°a; (where the exponent e is some integer),
it is possible to efficiently calculate the Jacobi symbol without knowing the
prime factorization n = p - ¢ [MvOV97]. This algorithm has a running time of
O((lg n)?) bit operations. Also, since the hash function is public, this process
of finding an H(ID,) = a which satisfies (%) = +1 can be replicated by any

user [Coc01].

However, unlike the Legendre symbol, the Jacobi symbol (£) does not re-
veal whether or not a is a quadratic residue modulo n [MvOV97]. This requires
further deductions as described next.

By definition from [2.1.3 (ﬂ) = (5) (g) Since (%) = +1, there are only

two cases possible:




()= 3) -0
P q
Thus a is a quadratic residue modulo both p and ¢. This means that a is
also a quadratic residue modulo n.

()= ()
P q
—a) _ (a —1 _(_ _ _
= —a € ()p. Similarly, —a € Q,
This means that —a is also a quadratic residue modulo n.

Thus, either a or —a is a quadratic residue modulo n. However, deduction
of this fact requires knowledge of the private parameters p and gq.

Next, the PKG computes the private key of Alice. One way to do this is to
calculate r = ¢ (mod n) [Coc01]. Such an r will satisfy either 72 = a
(mod n) or > = —a (mod n) depending on which of a or —a is a square modulo
n. An algorithm is described in [MvOV97] to calculate square roots modulo a

composite n, with an expected running time of O((lg n)?) bit operations.

Encrypt:

Suppose another user, say Bob, wants to send an encrypted message to Alice.
The encryption is done bit-by-bit.

Each bit z; of m-bit plaintext message string M = {z1---z,,} is encoded
as either +1 or -1 [Coc01]. Bob first chooses values ¢, ts at random modulo n,
such that ¢; # to and (%) = (%) = x;. The ciphertext (s; 1, $; 2) corresponding
to the plaintext bit (x;) is then computed as s;1 = (t1 + a/t1) (mod n) and
si2 = (ta — afta) (mod n) [Gag03].

Here, we observe that the ciphertext for one message bit consists of two data
elements. This doubling of ciphertext data occurs because, even though Bob
can calculate H(ID4) = a, he is not sure whether Alice has a received a root
of a or —a [Coc01]. Hence, if Bob makes the assumption that 7> = a (mod n),
and sends only (s;1) the decryption will fail with a probability of 3.

Decrypt:

Let’s assume that Alice received a private-key r satisfying 7> = a (mod n).
Then Alice recovers the plaintext bit (x;) by computing (s;1 + 2r) (mod n)
which can be simplified as:

(si1+2r) (modn) = (t1+a/ti+2r) (modn)
= (t1+7%/t1 +2r) (mod n)
(t1 +7)(1+7r/t;) (mod n)
= t(l+r/ty)(1+7/t1) (mod n)
= t1(1+7/t;)* (mod n)



Then the Jacobi symbol (#) evaluates to:

(2)- () () (2220 (3

Since, the Jacobi symbol can only take values +1, -1 or 0, the decryption
will fail if and only if (%) = 0. From Property 1 in|2.1.3] this is possible
if and only if ged((1 +7/t1),n) #1 = (1+%) ¢ Z7, i.e. there is at least one

prime factor common to both (1 + %) and n. However, for fairly large primes p
and g, the probability of such an event happening is quite low.

For better understanding, a numerical example is given in the Appendix.

2.3 Practical Aspects

Instead of encrypting and decrypting entire messages with this scheme, a more
practical approach is to generate a transport key and use it to encrypt the data
using symmetric encryption techniques. IBE can be employed to ensure secure
transmission of the transport key.

The most computationally demanding part of the encryption process involv-
ing an m-bit transport key is computing m Jacobi symbols and m divisions
modulo n. The decryption process involves computation of m Jacobi symbols.
For typical key sizes, the scheme is computationally not too expensive [Coc01].

We observe from the algorithm that a single bit of the message gets mapped
into two elements of the group Z;. This causes message inflation by a factor of
2logan [Gag03]. This requires much more bandwidth than transmission of the
plaintext message itself and may not be acceptable in some applications.

2.4 Security Analysis

The security of this scheme is based upon the hardness of the quadratic resid-
uosity problem which can be stated as follows:

Definition 4 [MvOV97] Given an odd composite integer n and a € J,, (where
Jn =set of all a € Z7, having Jacobi symbol +1), decide whether or not a is a
quadratic residue modulo n.

If n is a prime, then it is easy to decide whether a € Z; is a quadratic
residue modulo n, since by definition, a € @,, if and only if (%) = +1. However,
if n is an odd composite integer it is difficult to decide whether it is a quadratic
residue modulo n unless the factorization of n is known [MvOV97]. We can only
guess the correct answer with a probability of % To prove how the security of
this scheme relates to the intractability of the quadratic residuosity problem, we
consider a passive attack against the generation of each bit of the transport key.
We show that if the attack is successful, it directly implies that the attacker has
managed to crack the quadratic residuosity problem.



We assume that the hash function H is a random oracle. This assumption
is required to prove that the IBE algorithm provides semantic security [Gol04].
Assume that there exists a procedure F' that can recover (z;) from (s;1,$;2)
without knowing either r or factors of n. We also assume that this recovery
procedure can only take the hashed identity a as the input and cannot make
separate use of the input to the hash function H. Then, dropping the subscript
notation and assuming, without loss of generality, only one ciphertext (s), the
breaking process is the mapping;:

F(n,a,s) — o — (t>

n

valid whenever s = (t + a/t) (mod n) for some t.

Consider the value of F' evaluated for an a such that (%) = 41 but a is not
a square modulo n. In this case, we can find three other values t1, 2, t3 which
map to the same s [Gol04]. These are,

tl=t (mod p) tl=a/t (mod q)
t2=a/t (mod p) t2=t (mod q)
t3=a/t (mod p) t3=a/t (mod q)

But as (2) = (2) = =1, then (£) = (2) = (%) = — (&) [CocO]
Since, all the four values are equiprobable, the attacker can make a correct
guess only with a probability of %

Now, consider the second case where a is a square modulo n. In this case,
since the value of ¢ is unique, the attacker can correctly guess the value of x
with a probability of % + €.

Thus, uncertainty is only associated with the first case where a is not a
square modulo n. Hence, if the attacker makes a wrong guess, he is sure that a
is not a square modulo n. This means that the attacker has managed to devises
an algorithm which returns the correct solution of the quadratic residue problem
with a probability greater than % This goes against the intractability assump-
tion of the quadratic residuosity problem. Hence, the algorithm is semantically
secure.

In practice, we must also ensure that the generation of ¢ for successive en-
cryptions is done randomly, otherwise attacks are possible if the attacker can
find some correlation.

The scheme as described above is still vulnerable to adaptive chosen ci-
phertext attacks. However, Cocks outlines an approach to defend against such
attacks by adding redundancy to the transport key establishment data. How-
ever, no formal security proof for the scheme is available. Also, it is very easy
to delete, add or modify bits in the encrypted message, so additional integrity
protection must be employed to confirm the validity of the message.



Chapter 3

IBE Schemes using Bilinear
Maps

Boneh-Franklin’s scheme is built from bilinear maps and specifically uses the
Weil pairing on elliptic curves as an example of such a map [BF01]. The scheme
is secure as long as a variant of the Computational Diffie-Hellman problem called
the Bilinear Diffie-Hellman assumption is hard.

We start the chapter with a brief introduction to bilinear maps. Then we
present the Bilinear Diffie-Hellman assumption which used to prove the secu-
rity of Boneh-Franklin’s scheme. We explain Boneh-Franklin’s scheme in detail
along with the assumptions made in order to demonstrate its security. In later
sections, we present improvements suggested on this scheme which demonstrate
security even while some of the assumptions are relaxed and we also describe
schemes which extend the functionality of Boneh-Franklin’s scheme.

3.1 Introduction to Bilinear Maps

A bilinear map is a function which is linear in both its arguments. Here we
consider maps that establish relationship between cryptographic groups. Let
G1 and G be cyclic groups of order g, where ¢ is some large prime. A bilinear
map is a function e : G; x G; — G2 such that for all u,v € Gy and a,b € Z
e(au, bv) = e(bu, av) = e(u,v)™

These maps are sometimes called as pairings because they associate a pair
of elements from group G; to an element or a pair of elements in G5. Note that
these maps can be degenerate, i.e. maps all pairs G; x G; to the identity in Gs.
From the point of view of cryptography, we are interested only in admissible
bilinear maps.

A bilinear map is said to be admissible if it satisfies the following properties:

1. Bilinear: We say that a map é : G; X G; — Gy is bilinear if é(au, bv) =
é(bu, av) = é(u,v)* for all u,v € Gy and all a,b € Z.



2. Non-degenerate: The map does not send all pairs in G; x G7 to the
identity in Go, i.e. é(u,v) #1;V u,v € Gy.

3. Computable: There is an efficient algorithm to compute é(u,v) for any
u,v € Gy.

The admissible bilinear map is denoted by é. In practice, G; is implemented
using the set of all points on certain elliptic curve which form an additive group
and Go is a multiplicative group of large prime order.

3.2 The Bilinear Diffie-Hellman assumption

Computational Diffie-Hellman Assumption (CDH): [Wat05]

Consider a cyclic group G of order g formed by the set of all points on an elliptic
curve. The CDH assumption states that given (g, ag, bg) for a randomly chosen
generator g and random a,b € {0,1,--- ,q — 1}, it is computationally intractable
to compute the value (abg). The assumption can be well explained with Figure

5.1

Challenger Adversary

[G, 9, a0, bg]

Compute [ abg ] ??7?

Figure 3.1: Computational Diffie-Hellman Assumption

The challenger challenges the adversary by giving (G, g, ag, bg) parameters.
By CDH assumption, it is is computationally infeasible for the adversary to
compute (abg).

Bilinear Diffie-Hellman Assumption: [Wat05]

Let G; be an additive group of prime order p formed by the set of all points
on an elliptic curve and Gy be a multiplicative group of prime order g. Let
é : G1 x G — G4 be an admissible bilinear map and let P be a generator of G;.
Then the Bilinear Diffie-Hellman (BDH) Assumption in (G1, G2, é) can be stated
as follows: Given (P,aP,bP,cP) for some a,b,c € Z3, it is computationally
infeasible to compute W = é(P, P)*¢ € G if the CDH problem is intractable.
The assumption can be well explained with Figure [3.2

10



Challenger Adversary

[G1,G2, P, aP, bP, cP ]

Compute W= &(p, p)™ 272

Figure 3.2: Bilinear Diffie-Hellman Assumption

The challenger challenges the adversary by giving (G1, Ga, P, aP, bP, cP) pa-
rameters. By BDH assumption, it is is computationally infeasible for the ad-
versary to calculate W = é(P, P)®¢ € Gy. We observe that given (P, aP), we
can compute é(P,aP) = é(P, P)*. We can also compute é(P, P) which is the
generator of the multiplicative group Go. However, now we face the familiar
discrete-log problem of computing a given é(P, P) and é(P, P)®.

3.3 Boneh-Franklin’s IBE scheme using Bilinear
Maps

The first complete and efficient IBE scheme was proposed by Boneh and Franklin
[BEOT] using a bilinear map called Weil pairing over elliptic curves. The con-
struction of this bilinear map is beyond the scope of this report. Interested
readers are referred to [BF01] for more details. We present a brief introduction
of the pairing technique used.

The elliptic curve group (the set of point collection on elliptic curves) is used
as (&1 and the multiplicative group of a finite field is used as G,. The bilinear
map transforms a pair of elements in group G; and sends it to an element in
group G2 in a way that satisfies Bilinearity. That is, it should be linear in
each entry of the pair.

Assume that P and @Q are two elements (e.g. points on elliptic curves) of
an additive group Gy. Let é(P, Q) be the element of a multiplicative group Go
which is a result of the pairing applied to P and ). Then the pairing must have
the following property:

e(rpP,Q) = é(P,Q)" = é(P,rQ)

where r is an integer and 7P denotes the element generated by r times of addi-
tions on P, e.g. 2P =P+ P,3P =P+ P+ P and so on.

11



The proposed scheme consists of four randomized algorithms, viz. Setup,
Extract, Encrypt and Decrypt. In the next section, we review each in detail.

3.3.1 Basic IBE Scheme [BFO01]

1. Setup: Let E be an elliptic curve with coefficients in Fy, where ¢ is some
large prime. Let G; be an additive group of order g formed by the set of
all points on the curve E. Let P be a generator of G;. P is obviously a
point on the curve E. Let Gy be a multiplicative group of order ¢. Let
é : G; x Gy — Gy be an admissible bilinear map. Let [ be some large
prime which divides (¢* — 1), here k is a SECURITY PARAMETER
and k € Z+.

Choose a random s € [1,]] € Zy as the MASTER SECRET, compute
P, = sP as the public key of the PKG. Here PKG acts as Trusted
Authority(TA) and s is known only to PKG.

Choose crypto-hash functions Hy : {0,1}" — G} and H, : G5 — {0,1}"
for some n

(q,G1,Ga, é,n, P, Py, Hi, Hy) are all public parameters.

2. Extract: For a given string ID € {0,1}" of an authenticated user, com-
pute Qrp = H1(ID) € G3. Set private key of the user having identity 1D
to be djp = sQrp, so effectively each registered user has (Qrp,d;p) as
public and private key pairs.

3. Encrypt: The transmitter selects a plaintext M and applies the pairing
as shown in Figure to generate a TxPair = é(sP,rQrp) € Ga.

Gy Go

e *
0
sP © N\
L TePair =
é: Gy x Gy — Gy . ‘e(sP.rQID
reZ, (3
rQrp L4
'
'
'

Figure 3.3: Pairing applied at the sender

The ciphertext C' = (U, V) = ( rP, M & Ho(TxPair) ) is sent to the
receiver. Thus to encrypt a message M, sender uses the bilinear map to
combine the identity of the receiver and public key of PKG and a random
short term private key into a session key which masks the message.

4. Decrypt: The receiver after receiving the ciphertext C' = (U, V) =
( rP, M ® Hy(TxPair) ), applies the pairing as shown in Figure
to get RxPair = é(rP,sQrp) € Ga.

12



Gy Gy

Received L4
rP ]

b RaPair =

e Gl X Gl — Gz L4 ) Ké(‘)’P-SQID)l

Users ¢
s .
[ ]
[ J
[ ]

Figure 3.4: Pairing applied at the receiver

The receiver recovers the plaintext message M as follows:

M = V& Hy(RxPair)
= M & Hy(TxPair) ® Ho(RxPair)
M

According to bilinearity property Tz Pair = RxPair. Thus the receiver suc-
cessfully recreates the same session key and the short-term public key sent with
the ciphertext for retrieval of the plaintext.

The security of proposed scheme is based on efficiently computable bilinear
maps which are shown to be secure under a random oracle model. Random
oracles are described in the Section [3.4

However, this basic scheme provides security only against a chosen-plaintext
attack. In [BF01], Boneh and Franklin further show that applying the Fujisaki-
Okamoto generic transformation allows turning this basic scheme into a chosen-
ciphertext secure one in an extended security model.

3.4 Random Oracle Model

A Random Oracle is an oracle, i.e. a theoretical black-box that responds to
every query with a truly random response chosen uniformly from its output
domain, except that when it receives any specific query it responds exactly the
same way [BBMOQ].

The model can be better explained by Figure Here the oracle is modeled
as a mathematical function which gives Response(i) which is unique to Query(i).
It never gives Response(j) for Quarry(i), where i # j.

Random oracles are typically used when no implementable solution exists.

In the scheme proposed in [BFQ1], the two cryptographic hash functions H; and
H, are modeled as random oracles for proving semantic security. The scheme

13



Query(i) Response(i)
Mathematical
function

h 4

Query(i) » Response(j) for all i#j

Figure 3.5: Random Oracle

is also proven to be secure against chosen ciphertext attack under the random
oracle assumption. In the next section, we briefly explain an IBE scheme based
on bilinear maps which is proven to be secure under the standard security model.

3.5 Efficient IBE without Random Oracles [Wat05]

Let G; and Gy be groups of prime order p. Let é : Gy x G; — Gs be an
admissible bilinear map. Let g be a generator in G;. If identities are allowed to
be of arbitrary length, a collision resistant cryptographic hash function is used
to reduce an identity to n bits, i.e. H : {0,1}* — {0,1}"™. The scheme contains
four algorithms as explained below:

1. Setup: Choose o € Z,, at random. Compute g; = g*. Choose go € Gy,
compute MASTER SECRET = g5
Let u" € Gy be a random value and U = (u;) be a random n-length vector
with every u; chosen at random from G;. The parameters (g, g1, g2, u/, U)
are made public.

2. Extract: Consider a v bit string. Let v; denote the ith bit. Let T C
{1,2,...,n} be the set of all ¢ for which v; = 1. Choose a random r € Z,,.

Compute
(W J] wi).g") = (dr,d2)
€Y

3. Encrypt: In order to send a plaintext M € G, the sender chooses a
random value ¢ € Z, and computes the ciphertext C as

C = [C,Cy,C4)

[e(g1,92)' M, g', (u [T wi)']
€Y

4. Decrypt: Once the receiver receives the ciphertext C' = [Cy,Cy, C3], it
decrypts the plaintext message M in the following manner.
é(dz, C3)
M = C;x ——"F—=
7 é(dr, C)
é(g", (u HieT u;)")
é(gg‘ (Ul Hie'r ui)", gt)
é(gv (u HiET ui)rt)
é(gla gQ)t' é((ul HieT ui)rt7g)

= é(glaQZ)tM X

= é(g1,92)"M x

= M

14



3.5.1 Efficiency of the Scheme:

If the value of é(g1, g2) is cached, then encryption requires § to n group opera-
tions in G1, two exponentiations in G, one exponentiation in G5 and one group
operation in Go. For decryption it requires, two bilinear map computations, one
group operation in G, and one inversion in Gs.

This scheme is computationally more expensive than [BF0I] but provides
security under the standard security model. However, this method requires a
large amount of public data to be stored, which is undesirable for example, in
smart card applications. Hence a more memory efficient scheme bearing the
same amount of computational complexity is explained in the next section.

3.6 Secure and Practical IBE [Nac07]

This scheme is a variant of Water’s IBE scheme with a much smaller size of
system parameters. This scheme divides the system parameters size by a factor
[ at the cost of reducing security by [ bits. The construction yields a fully secure
practical IBE scheme.

The basic drawback of Water’s scheme is that the public parameters contain
n+4 group elements, where n is the size of the bit string representing identities.
Since n can be the output of a hash function, the value of n must be at least
160. If we assume size of a group element to be 1024 bits, then each partici-
pant must store 164 kilobytes of public parameters. Here we will only present
the variations as compared to Water’s scheme and how they help to reduce the
required memory size.

In Water’s scheme, to encrypt a message for an identity v = (v1,...,v,/) €

{0,1}™ | we compute the product

’
u.Hui

Vi =1
. ’ . . .
where U = (uq, ...., v, ) is n -dimensional public vectors.

Here we encode identities as n-dimensional vectors v = (v1, ..., v,), where
each v; is an [-bit integer and n.l = n and compute the modified product

n
4 v,
o]
’L)j,:l
where U = (uq, ...., 4, ) is an n-dimensional public vector. Therefore the size of

the public vector U is reduced by a factor of = = [.

3.6.1 Efficiency of the Scheme:

If the value of é(gi,g2) is precomputed then encryption requires one multi-
exponentiation in Gy (n exponents of size [) and three exponentiations in Gj.
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Decryption requires two bilinear map computations, one group operation in Go
and one inversion in Gy. Hence encryption and decryption are almost as efficient
as in Water’s scheme.

3.7 Hierarchical IBE scheme

A shortcoming of the Boneh-Franklin identity based encryption scheme is that
in a large network, the PKGs key generation task rapidly becomes a bottleneck
when many private keys have to be computed and secure channels have to be
established to transmit them to their legitimate owner [LQ].

The burden on a single PKG could be reduced by having a hierarchy of
PKGs where each PKG computes private keys only to the entities immediately
below itself in the hierarchy. Such an IBE scheme is called Hierarchical Identity-
Based Encryption (HIBE). Unlike normal IBE scheme where a string represents
an identity, a tuple of strings now represents an identity in HIBE where each
string contains his parents in the hierarchy [BNSNS04]. For example, in Figure
.6 (ID1,1Dy) is the parent of (1D, 1D, IDs).

mkeoyy K MK 1oty

({0} ] o0 |

Mk¢ioy o, K N mk{Dl,DE}

| (ID1, ID2} | | (lDl,lD‘z} |
mkyio, D, 105} v N mk{IDl,IDg,IDa}
| (|D1,|Dg.|D3) | | (lDl,ng,lD;} |

Figure 3.6: Hierachal of PKG’s

Lower-level PKGs (i.e. PKGs other than the Root PKG located at the top
of the hierarchy) generate private keys for their children by using some infor-
mation coming from their ancestors together with a private information that is
only known to them. Each of them then adds some information to the secret
parameters of their children.

Gentry and Silverberg proposed a scheme that extends Boneh-Franklin scheme
to obtain an HIBE scalable to an arbitrary number of levels [Gag03|. This
scheme is identical to Boneh-Franklin scheme for the special case of one level
of PKG, i.e. a single PKG and it also demonstrates security against adaptive
chosen ciphertext attack in the random oracle model.
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Chapter 4

Applications of IBE

4.1 Applications

We already mentioned that the original motivation for identity-based encryption
was to simplify certificate management in Section We now present other
applications which are suited for IBE.

e Revocation of public keys:

Public-key certificates are not valid beyond the expiration date. Once, the
certificate expires, users have to contact the CA for a new valid certificate.
However, in IBE, to ensure that private keys become invalid after a certain
date, the PKG may use receiver — identity| current — date as the public
key while generating the corresponding private key. Here current — date
can be the day, week, month or year depending on the frequency at which
we want the users to renew their private key.This ensures that the private
key will become invalid after that period.

e Managing user credentials:
By encrypting the messages using the public-key receiver—identity||current—
date||clearance—level the receiver will be able to decrypt the message only
if he has the required clearance. Thus, the PKG can be used to grant user
credentials. To revoke a credential, the PKG simply stops providing the
private key in the next time period.

e Delegations of decryption keys:

Suppose a manager has several assistants each responsible for a different
task. Then the manager can act as the PKG and give his assistants the
private keys corresponding to their responsibilities (so the public key in
this case would be receiver — identity||duty). Each assistant can decrypt
the messages whose subject fall within its responsibilities, but cannot de-
crypt messages intended for other assistants. The manager can decrypt
all the messages using his master-key.

e Forward secure encryption schemes: [Gag03]
Some of the schemes presented in this paper can also be used as building
blocks to construct forward-secure encryption schemes and key-insulated
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cryptosystems. In a forward-secure encryption scheme, the receivers pri-
vate key evolves at each time period so that if the private key of a time
period is compromised, all the messages encrypted in previous time peri-
ods are still secure. In a key-insulated encryption scheme, the secret key
is divided into two parts, both evolving at every time interval, which must
be combined to obtain the private decryption key. Future secret keys are
compromised only if both parts are exposed in the same time period.

4.2 1IBE in the Industry

Voltage Security (http://www.voltage.com) has secured several patents for their
identity-based encryption products. The technology is called Voltage IBE (VIBE)
and they have an entire suite of security products for secure mail (Voltage
SecureMail), secure instant messaging and peer-to-peer communication (Volt-
age SecureIM) and secure file transmission and reception (Voltage SecureFile).
A whitepaper (http://www.voltage.com/pdf/VoltagePlatformTechOverview.pdf)
reveals that techniques for key management and distributions are quite similar
to those described in [4.1]

Recently, Proofpoint, an email security products vendor, has added VIBE to
their Secure Messaging appliance. Smartcard vendor Gemalto (formerly Gem-
plus) was the first to develop Smart IBE, a prototype to integrate identity-based
encryption into smart cards.
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Chapter 5

Observations and
Conclusion

In this report, we have demonstrated that IBE definitely has some unassailable
advantages over traditional PKI. To review its major characteristic, there is a
strong binding between an identity and a key in IBE which especially benefits
systems where there is a strong binding between user and the identifier of the
communication end point, for example an email address, an IP address or a
mobile phone number. Thus, IBE is a natural choice for applications such as
secure email, secure SMS, mobile-commerce etc.

At the same time there are several open problems which need to be resolved
before IBE can become the de facto standard for public-key cryptosystems.

The most inherent shortcoming of IBE is the Key Escrow Problem. This is
because the PKG issues private keys for user using its master secret key. As a
result, the PKG is able to decrypt or sign any messages. In terms of encryp-
tion, this property might be useful in some situations where user’s privacy can
possibly be limited. However, in terms of signature, this key escrow property
is not desirable at all since non-repudiation is one of the essential requirement
of digital signature schemes. It is interesting to note however that key escrow
is somewhat restricted in HIBE: only a users father knows his/her complete
private key (because of lower-level secret information) and the other PKGs are
unable to decrypt ciphertexts intended for him/her.

Also in the algorithms discussed in this report, the crucial information is the
PKGs master key. All the systems privacy is compromised if that master key
is ever stolen by an attacker. In order to avoid having a single point of failure
and remove the built-in key escrow, Boneh and Franklin showed in [BFOI] that
it was possible to split the PKG into several partial PKGs in such a way that
these partial PKGs jointly generate a discrete logarithm key pair in a threshold
fashion and each of them eventually holds a share of the master key. Users
then have to visit a minimum of ¢-out-of-n honest PKGs to obtain a share of
their private decryption key. These shares can then be recombined into a full
decryption key using Lagrange interpolation.
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However this approach has the drawback that different PKGs have to ac-
cept the same role of independently checking the users identity before delivering
him /her a partial private key. This might be a burden in some situations and
it hampers any centralized key issuing policy among the PKGs.

As for the algorithm themselves, Cocks scheme although not computationally-
intensive requires much more bandwidth for the ciphertext than the input plain-
text. Also, it never really caught on with researchers and has almost certainly
been relegated to the sidelines in favour of Boneh-Franklin’s scheme. The latter’s
original scheme demonstrated security only under the random oracle model and
Boneh-Boyen’s proposal which extended the security to the standard model was
too computationally-intensive. Waters suggested a more efficient method, whose
memory requirements were fine-tuned in a later paper by Naccache. However,
all schemes based on pairing techniques are still quite expensive computation-
ally. So ideally we would like to construct IBE schemes which are not based on
the pairing but make more efficient use of bandwidth than Cocks’ scheme. We
do not know yet whether such schemes exist.
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APPENDIX

A Numerical Example of Cocks’ IBE scheme
Setup: Let p =7 and ¢ = 11 such that p,q =3 (mod 4)
Therefore, n = p-q =77 and ||Z}|| = 60

7 ={1,2,3,4,5,6,8,9,10,12,13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25,
26,27, 29, 30,31, 32, 34, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52,
53,54, 57, 58,59, 60, 61, 62, 64, 65, 67, 68, 69, 71,72, 73, 74, 75, 76

Jo={i€Zy: (1) = +1} = {1,4,6,9,10,13,15,16, 17, 19, 23, 24, 25, 36, 37, 40,
41,52, 53,54, 58, 60, 61, 62, 64, 67, 68, 71,73, 76

Extract: Consider an arbitrary ID such that H(ID) = 4.
PKG computes the private key for this ID as
A (mod n) = 4 (od n) =4% (mod 77) =9 € Z,
Here, 72 = 92 =4 (mod n)

Consider plaintext message string M = {1,0} encoded as {+1, -1}

First bit, z;1 = +1

Encryption: Choose ¢t = 10 since (%) =41
Compute s1 = (t + a/t) (mod n) = (10 + 4 - 107! (mod 77) = (10 + 4 - 54
(mod 77) =72
Send ciphertext s; = 72

Decryption: Compute (s + 2r) (m
Calculate Jacobi symbol (Hnﬁ = (%—;)
First bit decrypted!

odn)=(7242-9) (mod 77) =13
=+ 1

Second bit, zo = —1

Encryption: Choose ¢t = 20 since (%) =-1
Compute sy = (t + a/t) (mod n) = (20 + 4 - 207! (mod 77) = (20 + 4 - 27
(mod 77) =51
Send ciphertext s = 51

Decryption: Compute (s+ 2r) (mod n) = (51 +2-9) (mod 77) = 69

Calculate Jacobi symbol (5£27) = (£2) = —1 = a,
Second bit decrypted!

22



Failure condition: Consider the encryption-decryption of the second bit
22 = —1. Choose t = 12 since (12) = —1 Compute s; = (t + a/t) (mod n) =
(1244 -127! (mod 77) = (1244 - 45 (mod 77) = 38
Send ciphertext sg = 38

Decryption: Compute (s + 2r) (mo (38+2-9) (mod 77) = 56

) n) =
Calculate Jacobi symbol (%) = (% =0+# 29
Decryption failed for the second bit!
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