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Divisors and the Tate Pairing

This chapter introduces divisors, which are then used to construct the Tate
pairing. The Tate pairing in turn provides the basis for many IBE schemes,
including the Boneh-Franklin, Bohen-Boyen, and Sakai-Kasahara schemes. The
discussion of the Tate pairing here is designed to provide an overview of the
pairing, its properties, and how to calculate it. Further detail of the properties
of the Tate pairing can be found in [1, 2].

The Tate pairing by itself turns out to be unsuitable for cryptographic
applications because it frequently returns the value 1, but by modifying one of
the inputs to the Tate pairing using either a distortion map or a point on the
twist of an elliptic curve, it is easy to overcome this limitation.

41 Divisors

The divisors discussed in this section are very different from those discussed in
Chapter 2, but they unfortunately share the same name. In this context, a
divisor is a way of characterizing a function f'based only on its zeroes, where
f(x) =0, and poles, where f(x) = too, like when dividing by zero. We say that
a function f'(x) has a pole at infinity if f(1/x) has a pole at x = 0, so that a
polynomial of degree 7 has a pole of degree 7 at infinity. Similarly, we say that
a function f'(x) has a zero at infinity if /(1/x) has a zero at x = 0. For example,
the function

2
E" ; 23 =x-1 x+2)7
X

67

flx) =
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has a zero of order 2 at x = 1, a zero of order 1 at infinity, and a pole of order
3 at x = —2. Because a divisor characterizes a function based on its zeroes and
poles, two functions that differ by a constant will have the same divisor.

411 An Intuitive Introduction to Divisors

We keep track of the zeroes and poles of a rational function fin what we call
a divisor, which we write as div( /). We write such a divisor as the sum of the
points where fhas a zero or pole weighted by the multiplicities of the zeroes
and poles, with the convention that zeroes get positive weights according to their
multiplicities and poles get negative weights according to their multiplicities. In
the example above, we write div(f) = 2(1) + (e0) — 3(=2), to indicate that f
has a zero of order 2 at x = 1, a zero or order 1 at infinity, and a pole of order
3 at x = =2. In general, if we can write

Fe) =[] =%

1

then we write
div(f) =Y, a;(x;)

The notation for divisors can be a bit tricky, and we will need to be able
tell from the context that we dealing with divisors instead of numbers, so that
we are not tempted to treat divisors as numbers, trying to simplify expressions
like 2(1) — 3(=2) to get a number instead of a divisor.

Note that multiplying rational functions corresponds to addition of their
divisors and division of rational functions corresponds to subtraction of their
divisors. So if we have f(x) as defined above and

then
=D+ 27
Flgl) = (+2)° (x+ 1)

Cx-1)?
S+ 1)
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which corresponds to adding the divisors:

div(fz) = div(f) + div(g)
=2(1) + (e0) = 3(=2) + 3(=2) + (e0) — 4(-1)
= 2(1) + 2(c0) — 4(-1)

We can formalize this informal description of divisors with the following
definitions.

Definition 4.1

A formal sum of a set S is series {sq, 51, 53, . . .} of elements of S. A formal
sum is often written using a placeholder, with the understanding that the
placeholder is not to be evaluated.

Example 4.1

©)

(i)

A power series is a formal sum which we usually write as
ay+ ayx + azxz + ..., where each #; € S for some set S. We write
a power series with the understanding that the placeholder x is not
to be evaluated, and we could also write the same power series as
{d(), al, ay, . . }

If P=1{Py, P,, ... P,} is a set of points on an elliptic curve, then
D=a (P;)+ay(Py)+...+a,(P,) is a formal sum of the ele-
ments of P. In this case, we understand that in D the points in the
set P are just placeholders like the variable x in a power series, and
are not to be evaluated.

Definition 4.2

Let £ be an elliptic curve. A divisor on E is a formal sum of the form

D=3, np(P)

PeE

where each 7p is an integer and all but finitely many 7p are zero.

Example 4.2

For points P and P, on an elliptic curve, D = (P1) + 2(P;) — 3(0) is a

divisor.

Definition 4.3

We say that a divisor D is a principal divisor if there is a rational function f
such that D =div( f'). An equivalent definition is that a divisor D on an elliptic
curve is principal if we can write
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D=Y a;(P))

where 32, = 0 and 34, P; = O, with the last sum using the addition of points
on an elliptic curve. In particular, if P is a point of order 7, then the divisor
n(P) — n(0) is a principal divisor.

Example 4.3

(i) Let Py, P, and P3 be points on an elliptic curve with P53 = P +
Py. Then D = (Py) + (P,) + (=P3) — 3(0) is a principal divisor.
(i) Let P be a point on an elliptic curve of order #. Then D = n(P) —
n(0) is a principal divisor.
Definition 4.4

If £ is an elliptic curve and

D=3, np(P)

PeE

is a divisor then the support of D is the set of all points P such that #p # 0.

Example 4.4

For the divisor D = (P1) + (P3) + (=P3) — 3(0), the support of D is the set
{P13 PZ! _Pﬁy O}

Definition 4.5

Let D and D, be divisors. Then we say that D and D, have disjoint support
if the intersection of the support of D; and the support of D, is the empty
set, or D1 N Dy =Q.

Example 4.5

(i) The divisors D1 = (P1) — (O) and D, = (P; + R) — (R) have dis-
joint support as long as {1, O} N {P; + R, R} = Q.
(i) The divisors D1 = (P) — (O) and D, = (Q) — (O) do not have dis-

joint support.

We can think of the divisors as keeping track of where the graph of an
elliptic curve £ intersects the graph of a function f(x), or where E = f(x), so
they keep track of zeroes and poles of £ = f(x). In particular, we get a zero
when E = f(x), or when the function f(x) crosses the elliptic curve £ and we
get a pole when f(x) has a pole.
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The functions # and v that appear in Figure 4.1 are very important in
implementing operations on divisors, and in the following, # will always represent
a line through two points P} = (x7, y1) and P = (x3, y2) on an elliptic curve
and v will always represent a vertical line that goes through Pz = (x3, y3),
where Py =P+ P.

Suppose that we do not have the case where P{ + Py = O and neither
P1 = Onor Py = 0. Then we can write the point-slope form of a line through

(e1, y1) as
y—y1=mx—x1)
or
y—y1=-mx+mx; =0

which gives us an explicit way to find the line #. Similarly, the line v is given

by

x—x3=0

Figure 4.1 lllustration of the lines v and v in the addition of points on an elliptic curve.
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If one of the two points is O, then # is the vertical line through the point
that is not O, and if the point (x3, y3) = O then v is the vertical line x = 0.
These forms of the lines (x7, y;) and (x1, y1) are shown in Figure 4.2. The
cases where either P} = O, P, = O, or P = P; are shown in Algorithm 4.2,
4.3, and 4.4.

The particular points that we use to define the lines # and v should be
clear from the context, so we will usually omit the points to keep the notation
simpler. If we need to clarify which points are being used, we will write
wp,, p,Or vp, to indicate the line through P and P, or the vertical line through
P3, respectively. With this notation, # and » have the following divisors:

div(u) = (P1) + (P3) + (=P3) — 3(0)
div(v) = (P3) + (=P3) — 2(0)

where we have now accounted for the poles that the lines # and v have at O.
Another useful fact is what we get when we subtract the divisor of # from
the divisor of v:

u:y—y,—mx+mx,=0

Figure 42 Forms of the lines u and v used to add divisors on an elliptic curve.
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div(u) — div(v) = div(ulv) 4.1)
= (P1) + (Py) + (P3) — (O)

If we have two divisors of the form:

Dy =(Py) - (0) + div(f1)
Dy = (Py) = (0O) + div(f3)

we can add the two divisors to get
Dy + Dy = (Py) + (Py) — 2(0) + div(f1 f2) (4.2)

Solving for (P1) + (P3) in (4.1) and substituting the result into (4.2) we find
that

Dl + D2 = (P3) - (O) + dz’v(flfzu/v) (43)

So the divisors of the lines # and v provide a way to add two divisors and
keep the result in the form (P) — (O) + div(f).

To clarify how this works, we will now step through a calculation of the
sum of two divisors, where the arithmetic is done on the curve y2 x> +1
over [s, as is defined in Table 3.2.

In particular, we consider the divisor D = (]32) — (O) and see what we
get when we add it to itself. Using (4.3) and the fact that we can also write
the divisor D as div(1) we find that

D+ D=(P,y) - (0)+div(1) + (P;) = (O) + div(1)
= (]31) —(0) + div(ulv)

Now # is the line tangent to the elliptic curve at ]A)z, and v is the line
connecting Py + Py=Pyand —(Py + Py) = P,. Solving for # and v we find
that we have y — 4 = 0 for the line #, or y + 1 = 0 in F5. Similarly, we have
x = 0 for the line ». Substituting these for # and v we get that

D+D=(f’1)—(0)+div<y: 1)

If we add the divisor D to this sum one more time we find that we are
just left with the divisor of a rational function when the terms of the divisor
involving points on the curve cancel each other when we reach
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3D = 3(]’2) - 3(0) because P2 is a point of order 3. At the next step, the line
u through Py and Py is the vertical line x = 0, since x = 0 is the common x

coordmate that Py and P, share. We define the vertical line v through the
point Py + Py = 0O to be 1. Thus, we have

3D =3(P,) - 3(0)

+1

=Py + P) - (0) + dw(y

=(0)—(0)+diy<y+1’ﬁ>
x 1

=div(y+ 1)

)

Definition 4.6

If D is a divisor of the form
D=3, a;(P;)
then we define what it means to evaluate a rational function fat D by
o) =11ren"
Example 4.6
(i) If D =2(P;) — 3(P;) then

F(D) = f(P))* f(Py)

_ f(Pl)2
]C(Pz)3

(ii) If P=(2, 3) and Q = (0, 1) are points on £/F;; and D is the divisor
= (P) — (Q) and f'is the rational function f(x, y) = y + 1, then

3+1
1+1

f(D) =

=4-2"=4-6=2(mod 11)

In many cases, it is possible to exchange the roles of a function fand a
divisor D in expressions like (D). This is formalized in the following.
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Property 4.1 (Weil Reciprocity)

Let fand g be rational functions defined on some field F. If div( f) and div(g)
have disjoint support then we have that f(div(g)) = g(div(f)).

Example 4.7

Suppose that we have two rational functions f'and g defined on [F;; where

x—2
f(x):x—7
and
x—06
g(x)=x_5

so that we have

div(f)=(2) - ()

and
div(g) = (6) — (5)
then
. 6) 7
fdiv(g)) = % == 7 +3=10(mod 11)
and
gD _5_ o, _
gldiv(f)) =7 "6 5+2=10(mod 11)
Definition 4.7

Divisors D and D are equivalent if they differ by a principal divisor, that is,
D= D) - Dj is a principal divisor.

Example 4.8

(i) If fis a rational function, the divisors (?) — (O) and (P) — (O) +
div(f) are equivalent.
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(i) We can see that (P + R) — (R) is equivalent to (?) — (O) by using
the line # that goes through the points P, R and —(P + R) and the
line » that goes through the points —=(” + R) and P + R. Then we
have that

div(u) = (P) + (R) + (—=(P+ R)) — 3(0)
diviv) = (—-(P+R))+ (P+ R) — 2(0)

so that
P)—(0)=P+R)—(R) +div(ulv)

So the difference between (P + R) — (R) and (P) — (O) is a principal
divisor, since it is the divisor of the rational function #/v, and (P + R) — (R)

is equivalent to () — (O).

4.2 The Tate Pairing

Now that we have defined divisors and how to manipulate them, we can define
the Tate pairing and describe how to calculate it. The Tate pairing operates
on pairs of points P € E(F;)[n] and Q € E(F4t), and produces a result in
[F:;/e. We write (P, Q) for the Tate pairing of the points P and Q. For a point
P of order n, to get ¢(P, Q) we first find a rational function fp so that
div( fp) is equivalent to #(P) — n(O) and then evaluate fp at a divisor equivalent
to (Q) — (O). We can summarize this in the following.

Definition 4.8

Let E/ﬂ:q be an elliptic curve, P € E(l]:q) [#]and Q € E(l]:qé). Let fpbe a rational
function with div ( fp) equivalent to 7(P) —#(O) and 4 ¢ be a divisor equivalent
to (Q) — (O) with the support of div(fp) and A disjoint. Then the Tate
pairing is defined to be ¢(P, Q) = fp(Aq). This definition does not produce
a unique value, and will include a constant that is an zth power of some element
of [Fqk.

It is not immediately obvious why the Tate pairing is well defined by this
definition. So we should convince ourselves that this definition is actually
independent of our choices for fp and AQ. In doing so, we will see why the
Tate pairing is only defined up to multiplication by an nth power of some
constant. In the following we will see that it is easy to get rid of this unwanted
constant, leaving a unique value.

Note that fp is defined up to a constant multiple. Applying the definition
of evaluating a divisor at a function to such a constant multiple shows that this
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has no influence on the value of fp(4¢), so it is independent of the choice of

fr-

Now suppose that D and D are both divisors equivalent to (Q) — (O),
say D1 = Dy + div(g) for some rational function g. To be careful, we also
need to assume that the support of div( fp) is disjoint from the support of
div(g). Then we have that

fp(D1) = fp(Dy + div(g))
= fp(D3) fp(div(g))
= f2(D2) g(div( 7)) (by Weil reciprocity)
= fp(D2)g(n(P) — n(0))

= fp(D2)g((P) - (0))"

We can then abuse the notation of congruences slightly to write this as

fr(D1) = fp(D3)

which we think of as meaning that /(D) = fp(D3,) up to a constant that is
an nth power.

The examples of adding divisors above show how to find a divisor equiva-
lent to n(P) — n(O): we can add the divisor (P) — (O) to itself 7 times by
using the divisors div () and div(v) that we get from the lines through various
points on the elliptic curve, and after reaching 7 (P) — 7(O) we will be left
with a divisor of a rational function that we call fp when all of the terms
involving the point P disappear. To avoid the troubles with evaluating a function
at the point at infinity that appears in (Q) — (O), we can pick a random point
R on our elliptic curve and evaluate fp at (Q + R) — (R) instead, which is
equivalent to the divisor (Q) — (O).

Because the point P is of order 7, if we repeatedly add the divisor (P) —
(O) to get n(P) — n(O) using the technique that is summarized in (4.3), we
find that we end up with a divisor of a rational function that is the product
of terms of the form #/v, where # is the line through two points (the points
Py and P; in Figure 4.1, for example) on our elliptic curve and v is the vertical
line that passes though the point that is the sum of the same two points (the
point P3 in Figure 4.1, for example).

Suppose that A ¢ is a divisor of the form (Q + R) — (R) that we get from
a random R # O. Note that the requirement that the support of the divisors
n(P) — n(0) and A are disjoint means that Q + R # P, and R # P. We
exclude these cases because they either reduce the value of the pairing to zero
by introducing a factor of zero in a calculation, or cause a division by zero



78 Introduction to Identity-Based Encryption

error. An examination of Algorithms 4.2 through 4.4 should clarify the ways
in which this can happen.

To give an example of how this works, we will use the same example that
we used above to find e(Pz, Pz) We found that S(Pz) 3(0) is equivalent
to the divisor a’w(y + 1), so we have fp =y+1L Next, we need a random
point to add to P,, for which we pick P4, so we want to evaluate fp, at
(P2 + P4) (P4) (P3) (P4) or we want to find fp (P3)/fp (P4) Note
that it is possible to pick a random point that causes division by zero, for
example if we picked the point 25 in this example. If this happens, we can just
pick another random point until we find one that works. Substituting the
appropriate values from Table 3.2, we find that

. [h(Py)
by, by = 225 =5 (4.4

=3-4'=2¢F;s

As mentioned above, the Tate pairing has an additional multiplicative
factor of 7" for some 7 € U:q/e, so that we actually get e(P, Q) =4 - " for when
we calculate it. From Property 2.13 we have that for any ¢ € [+ we have that

-1 ~ isea - 1" -
3 =1, so if we raise @ - 7" to the power (¢° — 1)/n we get that

(él . rn)(qk—l)/n — d(qk—l)/n 1= d(qk—l)/n

so that such an exponentiation eliminates the extra multiplicative factor and
leaves a unique result. Thus while ¢(2, Q) is not unique, the additional exponen-
tiation that gives us

e(p, Q)7 -V

determines a unique value, and thus more suitable for many uses. The use of
such an exponentiation to determine a unique value is called the final exponentia-
tion and the unique value is called the reduced pairing.

Example 4.9

(i) Consider the case where we have E/F;;: y2 =x’ +x and
P = (5, 3) € E(Fy;) [3]. To find fp(x, y) we want to find the rational
function so that div( fp) is equivalent to the divisor 3(P) — 3(0).
We get this through a repeated application of (4.3).
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We want to find

3(P) - 3(0) = 3((P) — (0))
=((P) - (0) + () - (0) + (P) - (0))

We can start calculating this by first finding

2(P) - 2(0) = 2((P) - (0))
=((P) - (0) +((?) - (0))

by

(P) = (0) + (P) = (0) =(P) = (O) + div(1) + (P) = (O) + div(1)
=(2P) - (0) + div(y + 2x+9)

Then

3(P) = 3(0)=2P) = (O) + div(y + 2x+ 9) + (P) — (O) + div(1)
=(3P) - (0) +div(y+2x+9)
=(0) - (0) +div(y + 2x +9)
=div(y+2x+9)

so that

fplx,y) =y+2x+9

If we have Q = (7, 8) and R = (10, 3), then Q + R = (9, 10)

and we evaluate fp at A = (Q + R) — (R) we get

_pQER)_ 4
fllQ+ B) = (R) = HEm =

=4-10"=4-10=7(mod 11)

Thus e(P, Q) = fp(Aq) =7.

(i) Consider the case where we have E/Fy; : y2 =x’+1 and
P =(5,4) € E(Fy;) [4]. Because P is of order 4, to find fp(x, y) we
want to find the rational function so that div( fp) is equivalent to
the divisor 4(P) — 4(O). We get this through a repeated application

of (4.3).
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We want to find

4(P) — 4(0) = 4((P) - (0))
=((P) - (0) + ((P) - (0)) + (P) = (0)) + ((P) - (0))

We can start calculating this by first finding

2(P) - 2(0) = 2((P) - (0))
=((P) - (0) + ((?) - (0))

by

(P)=(0)+(P)—-(0)=(P)—-(0) +div(1) + (P) — (O) + div(1)

= P) - (0) + div <%>

Then

y+3x+3

3(P) —3(0)=(2P) - (0) + dz’v( 1

) + (P) - (O) + div(1)
=@3P)-(0) + dz’u(

(y + 3x + 3)°
(+ 1)(x+6)>

And finally

(y + 3x + 3)*

4(P) - 4(0) = (3P) - (0) + di”((x + 1) (x + 6)

> + (P) = (0) + div(1)

2
— (4P) - (0) H%M)
x+ 1

2
=(0) - (0) + div(w)

x+1

2
:diy<(y+3x+3) >
x+ 1

so that
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_(y+3x+3)°
frle y) ==

If we have Q= (5,7) and R= (9, 9), then Q + R= (0, 1) and
we evaluate fpat Ag = (Q + R) — (R) we get

B _fPQ+R) 5
f(@+ R) = (R = HEEE = ¢

=5-81=5-7=2(mod 11)
Thus e(P, Q) = fp(4 Q) =2.

421 Properties of the Tate Pairing

As defined earlier, the Tate pairing has the following properties:

1. The Tate pairing is nondegenerate, that is, for each
Pe E([Fq) [2]/{O} there is some Q € E([Fqk) with ¢(P, Q) # 1.

2. The Tate pairing is bilinear, that is, for each P, Py, P, € E([Fq) [7]
and Q,Q, Qe E([Fqk) we have e(P1+ Py, Q) =
€(P1, Q)E(Pz, Q) and €(P, Q] + Qz) = E(P, Q])E(P, Qz)

To convince ourselves that the Tate pairing is bilinear, we need to consider
two separate cases.

To see that the Tate pairing is linear in its first parameter, let fp , fp,,
and fp  p, be rational functions such that we have

div(fp,) = n(Py) = n(0)
div(fp,) = n(Py) - n(0)

and
div(fp +p,) = n(Py + P3) — n(0)
Note that the divisor
D= (Py+ Py) = (P) = (P) +(0)

is a principal divisor so it is the divisor of some rational function, say
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div(g) = D
then
div(fp 4 p,) — div(f) = div(f2) = n(Py + Py) = n(P1) = n(P) = n(O)
= 1D = ndiv(g) = div(g")

so that

div( fp +p,) = div(f) + div(f5) + div(g")

SO we can write

frep,= 1128

Thus

e(Py+ Py, Q) =fp +p,(AQ) = fp,(AQ) fp,(AQ)¢" (AQ)
=e(P1, Qe(Py, Qg"(AQ)

So if we are ignoring nth powers, we find that

e(P1 + Py, Q) =e(Py, Q) e(Py, Q)

as desired.
To see that the Tate pairing is bilinear in the second parameter, let
Ag,+0q, be a divisor equivalent to (Q + Q) — (0), 4 Q, be a divisor equivalent

to (Q1) — (0) and Aq, be a divisor equivalent to (Q1) — (O). Then
AqQ,+q,— Aq, — Aq, is equivalent to

D=(Q;+Q3)—(Q)—(Q2) +(0)

which is a principal divisor. So A+, is equivalent to Aq, +4q, because
they differ by a principal divisor. Thus we can write

€(P, Ql + QZ) :fP(AQ1+Q2>

= fr(dq, +4q,) = frldq,) fr(4q,)
= E(P, Ql)é‘(P, QZ)



Divisors and the Tate Pairing 83

A mapping that is nondegenerate and bilinear and is also efficiently com-
putable is called a pairing, and such mappings are the fundamental primitives
from which many cryptographic algorithms are constructed. On the other hand,
the Tate pairing also has the following property that limits its usefulness because
it returns the value 1 in many cases.

Property 4.2 (Galbraith) [3]

Let PeE (I]: )[#]{O} and 7 relatively prime to g. Then to have
e(P, P) # 1, we must have £ = 1.

So for an embeddlng degree k> 1 we have ¢(P, P) = 1, which also means
that e(aP, 6P) = (P, P) =1 for integers 2 and b, so that the Tate pairing
may not seem very useful at first. The following result provides insight into
how to overcome this limitation.

Property 4.3 (Verheul) [4]

Let 7 be a prime, P € E(l]: ) [7] L Qe E(l]: #) be linearly independent from
P, and £ > 1. Then we have that e(P Q) is nondegenerate

So if we have P € E ([Fq) [#] and a nontrivial embedding degree, that is,
we have £ > 1, then one way to make sure that the Tate pairing ¢(P, Q) is
nondegenerate is to make sure that Q is linearly independent of P. One way
to do this is to use a distortion map, so that instead of computing ¢(P, Q),
we compute ¢(P, ¢(Q)) instead, where ¢ is an appropriate distortion map.
Another way is to compute e(P, ¢4(Q)) where Q € E” is on the twist of the
elliptic curve E and ¢, : E” — E is the mapping defined in Section 3.3.1. In
either case, we denote the resulting pairing by é(P, Q), where either
é(P, Q) =e(l, p(Q)) or é(P, Q) = e(P, ¢p4(Q)) as appropriate and call such
an ¢é the modified Tate pairing.

Example 4.10

(1) (Dlstornon Map) From Example 4.1(ii), we have where
E/Fqq : y =x>+1and P= (5, 4) € E(Fyy) [4], we get

C(y+3x+3)°
frle y) ==
If we have Q=(5,7) and R= (9, 9), then Q + R= (0, 1) and
we evaluate fp at Apg=(Q+R)—(R) we get e(P, Q)=
fp(Aq) =2 € [Fyy, so that for the reduced Tate pairing we get

e(P, Q)" =V = p017=DM _ 930 — 4 (1mod 11)
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In this case, ¢ (x, y) = (éx, y), where €=5+ 3 - 4, is a distortion
map for the point Q, and we find that ¢(Q) = 3 +4 - 4, 7) and
that #(Q) + R= (1 + 4 - 4, 5). Thus, we have that

on _ PBQ +R)
Sl (@ + B = (R) = 2

_1+9z‘
-8

=7+ 8;

so that for the reduced modified Tate pairing we get
e(P, QN V" = 7 4 851V = (7 4 810 = 10 (mod 11)

(i) (Twist). We have that £ : }/2 = x> + 10 is the quadratic twist of
ElFy 1y = x> + 1 that is created using the quadratic nonresidue
v=10.If P = (5, 4) € E(Fy;) [4], then from Example 4.1(ii) we get

(y+3x+3)?
fple y) =

In this case, we have

-3/2

br(x, 9) = (y_lx, v 7y) = (10 - x, 7+ y)

If we have Q = (3, 2) € E’ and R = (9, 9), then ¢,(Q) =
(8, 27) then ¢5(Q) + R= (5 + 87, 87). Thus we have that

fp((2(Q) + R) — (R) = Jr($2(Q) + R)

fr(R)
_4+8i_5,
“6+81

so that for the reduced modified Tate pairing we get

(P, da(QN' =D = (57 17=DM = (57530 = 10 (mod 11)

4.3 Miller's Algorithm

The technique that we used above to find a divisor equivalent to 7 (P) — #(0),
in which we iteratively find divisors equivalent to (P) — (O), 2(P) — 2(0),
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., up to n(P) — n(O) by a repeated application of (4.3) will certainly work,
butitis extremely inefficient. In a typical cryptographic application, 7 is typically
at least 21, 50 iterating in this way is impractical. Instead, the way we calculate
n(P) — n(0O) is by the double-and-add technique, and finding a divisor equiva-
lent to #(P) — n(O) in this way is called Miller’s algorithm [5]. Miller’s algorithm
is based on the observation that it is easy to generalize (4.3) to divisors

D = (aP) - (O) + div(f1)
and
D, = (6P) — (0) + dll/(fz)

to find that

Dy +Dy=(a+b)P- (O)+dzu<ff “P;”)”P>

We can formalize Miller’s algorithm as follows. Pick an elliptic curve £
on which all of the following calculations will be performed. Let

Pe E(ﬂ:q) ]Jand Q € E(l]: k) with
t
= z b;2's
i=0
so that (b;, ..., b1, bg) is the binary expansion of 7. We start with /=1,

S = P, and R a random point on E. We then do a double-and-add iteration
through the binary expansion of 7, performing the doubling step at each iteration
and the adding step if the bit we are at is a 1. This will let us build the rational
function equivalent to 7(P) — 7(O) out of the repeatedly doubled terms, and
we evaluate each of these terms at (Q + R) — (R) as we calculate them. We
do this by the following algorithms.

Algorithm 4.1: TatePairing (Miller’s algorithm for computing the Tate pairing)
INPUT: Elliptic curve £ : y2 =x+ax+bh Pe E[n] with
n = Elt':() bi2l, Q

OUTPUT: ¢(P, Q)

l. fe 1,1« Llog2 n), § « P, R < a random point of E, R # O,
Q+R#0
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2. Fori< t—1downto 0

2 us,5(Q + R)vyg(R)
3. fe 2

fef v25(Q + R)ug s(R)
4. S« 28

5. 16 b, =1
6
7
8

ug p(Q+ R)vg, p(R)
S QF Ryus p(R)
S« S+ P

. Return f

Algorithm 4.2: v
INPUT: P, Q
OUTPUT: vp(Q)

1. IfP=0
2. Return 1
3. Return x — xp

Algorithm 4.3: tangent_u
INPUT: P, Q on an elliptic curve E : )/2 x>t ax+ b
OUTPUT: up, p(Q)

1. IfP=0

2. Return 1

3. Ifyp=0

4. Return v(P, Q)
3x% +a

2yp
6. Return yo —yp— mxq + mxp

5. m ¢«

Algorithm 4.4: u
INPUT: Pl) Pz, Q
OUTPUT: up  p,(Q)

1. IfPy=0

2. Return v(P;, Q)
3.1fP,=0or P +Py=0
4. Return v(Pq, Q)
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5. If Py =Py
6. Return tangent_u(Pq, Q)
yp, —Jp
7. mé&— ————
Xp, = Xp,
8. Return yg — yp, — mxq + mxp,
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