
Introduction to Identity-Based Encryption

Luther Martin

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13: 978-1-59693-238-8

Cover design by Yekaterina Ratner

 2008 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without permission
in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

10 9 8 7 6 5 4 3 2 1

Contents

Preface xiii

1 Introduction 1

1.1 What Is IBE? 1

1.2 Why Should I Care About IBE? 8

References 13

2 Basic Mathematical Concepts and Properties 15

2.1 Concepts from Number Theory 15
2.1.1 Computing the GCD 16
2.1.2 Computing Jacobi Symbols 24

2.2 Concepts from Abstract Algebra 25

References 39

3 Properties of Elliptic Curves 41

3.1 Elliptic Curves 41

3.2 Adding Points on Elliptic Curves 47
3.2.1 Algorithm for Elliptic Curve Point Addition 52
3.2.2 Projective Coordinates 53
3.2.3 Adding Points in Jacobian Projective Coordinates 54

v

vi Introduction to Identity-Based Encryption

3.2.4 Doubling a Point in Jacobian Projective
Coordinates 55

3.3 Algebraic Structure of Elliptic Curves 55
3.3.1 Higher Degree Twists 61
3.3.2 Complex Multiplication 65

References 66

4 Divisors and the Tate Pairing 67

4.1 Divisors 67
4.1.1 An Intuitive Introduction to Divisors 68

4.2 The Tate Pairing 76
4.2.1 Properties of the Tate Pairing 81

4.3 Miller’s Algorithm 84

References 87

5 Cryptography and Computational Complexity 89

5.1 Cryptography 91
5.1.1 Definitions 91
5.1.2 Protection Provided by Encryption 93
5.1.3 The Fujisaki-Okamoto Transform 95

5.2 Running Times of Useful Algorithms 95
5.2.1 Finding Collisions for a Hash Function 96
5.2.2 Pollard’s Rho Algorithm 98
5.2.3 The General Number Field Sieve 99
5.2.4 The Index Calculus Algorithm 102
5.2.5 Relative Strength of Algorithms 102

5.3 Useful Computational Problems 104
5.3.1 The Computational Diffie-Hellman Problem 105
5.3.2 The Decision Diffie-Hellman Problem 106
5.3.3 The Bilinear Diffie-Hellman Problem 107
5.3.4 The Decision Bilinear Diffie-Hellman Problem 107
5.3.5 q -Bilinear Diffie-Hellman Inversion 108
5.3.6 q -Decision Bilinear Diffie-Hellman Inversion 109
5.3.7 Cobilinear Diffie-Hellman Problems 109

viiContents

5.3.8 Integer Factorization 109
5.3.9 Quadratic Residuosity 109

5.4 Selecting Parameter Sizes 110
5.4.1 Security Based on Integer Factorization and

Quadratic Residuosity 110
5.4.2 Security Based on Discrete Logarithms 110

5.5 Important Special Cases 111
5.5.1 Anomalous Curves 112
5.5.2 Supersingular Elliptic Curves 112
5.5.3 Singular Elliptic Curves 113
5.5.4 Weak Primes 113

5.6 Proving Security of Public-Key Algorithms 114

5.7 Quantum Computing 116
5.7.1 Grover’s Algorithm 116
5.7.2 Shor’s Algorithm 117

References 118

6 Related Cryptographic Algorithms 121

6.1 Goldwasser-Michali Encryption 121

6.2 The Diffie-Hellman Key Exchange 124

6.3 Elliptic Curve Diffie-Hellman 125

6.4 Joux’s Three-Way Key Exchange 126

6.5 ElGamal Encryption 128

References 129

7 The Cocks IBE Scheme 131

7.1 Setup of Parameters 131

7.2 Extraction of the Private Key 133

7.3 Encrypting with Cocks IBE 133

7.4 Decrypting with Cocks IBE 135

7.5 Examples 136

viii Introduction to Identity-Based Encryption

7.6 Security of the Cocks IBE Scheme 139
7.6.1 Relationship to the Quadratic Residuosity

Problem 139
7.6.2 Chosen Ciphertext Security 142
7.6.3 Proof of Security 142
7.6.4 Selecting Parameter Sizes 143

7.7 Summary 143

References 145

8 Boneh-Franklin IBE 147

8.1 Boneh-Franklin IBE (Basic Scheme) 149
8.1.1 Setup of Parameters (Basic Scheme) 149
8.1.2 Extraction of the Private Key (Basic Scheme) 150
8.1.3 Encrypting with Boneh-Franklin IBE (Basic

Scheme) 150
8.1.4 Decrypting with Boneh-Franklin IBE (Basic

Scheme) 151
8.1.5 Examples (Basic Scheme) 151

8.2 Boneh-Franklin IBE (Full Scheme) 156
8.2.1 Setup of Parameters (Full Scheme) 156
8.2.2 Extraction of the Private Key (Full Scheme) 157
8.2.3 Encrypting with Boneh-Franklin IBE (Full

Scheme) 157
8.2.4 Decrypting with Boneh-Franklin IBE (Full

Scheme) 158

8.3 Security of the Boneh-Franklin IBE Scheme 158

8.4 Summary 159

Reference 160

9 Boneh-Boyen IBE 161

9.1 Boneh-Boyen IBE (Basic Scheme—Additive
Notation) 162

9.1.1 Setup of Parameters (Basic Scheme—Additive
Notation) 162

9.1.2 Extraction of the Private Key (Basic Scheme—
Additive Notation) 164

ixContents

9.1.3 Encrypting with Boneh-Boyen IBE (Basic
Scheme—Additive Notation) 164

9.1.4 Decrypting with Boneh-Boyen IBE (Basic
Scheme—Additive Notation) 164

9.2 Boneh-Boyen IBE (Basic Scheme—Multiplicative
Notation) 168

9.2.1 Setup of Parameters (Basic Scheme—
Multiplicative Notation) 168

9.2.2 Extraction of the Private Key (Basic Scheme—
Multiplicative Notation) 170

9.2.3 Encrypting with Boneh-Boyen IBE (Basic
Scheme—Multiplicative Notation) 170

9.2.4 Decrypting with Boneh-Boyen IBE (Basic
Scheme—Multiplicative Notation) 170

9.3 Boneh-Boyen IBE (Full Scheme) 171
9.3.1 Setup of Parameters (Full Scheme) 172
9.3.2 Extraction of the Private Key (Full Scheme) 173
9.3.3 Encrypting with Boneh-Boyen IBE (Full Scheme) 173
9.3.4 Decrypting with Boneh-Boyen IBE (Full Scheme) 173

9.4 Security of the Boneh-Boyen IBE Scheme 174

9.5 Summary 175

Reference 176

10 Sakai-Kasahara IBE 177

10.1 Sakai-Kasahara IBE (Basic Scheme—Additive
Notation) 177

10.1.1 Setup of Parameters (Basic Scheme—Additive
Notation) 178

10.1.2 Extraction of the Private Key (Basic Scheme—
Additive Notation) 178

10.1.3 Encrypting with Sakai-Kasahara IBE (Basic
Scheme—Additive Notation) 180

10.1.4 Decrypting with Sakai-Kasahara IBE (Basic
Scheme—Additive Notation) 180

10.2 Sakai-Kasahara IBE (Basic Scheme—
Multiplicative Notation) 182

x Introduction to Identity-Based Encryption

10.2.1 Setup of Parameters (Basic Scheme—
Multiplicative Notation) 182

10.2.2 Extraction of the Private Key (Basic Scheme—
Multiplicative Notation) 183

10.2.3 Encrypting with Sakai-Kasahara IBE (Basic
Scheme—Multiplicative Notation) 184

10.2.4 Decrypting with Sakai-Kasahara IBE (Basic
Scheme—Multiplicative Notation) 184

10.3 Sakai-Kasahara IBE (Full Scheme) 185
10.3.1 Setup of Parameters (Full Scheme) 185
10.3.2 Extraction of the Private Key (Full Scheme) 185
10.3.3 Encrypting with Sakai-Kasahara IBE (Full

Scheme) 185
10.3.4 Decrypting with Sakai-Kasahara IBE (Full

Scheme) 187

10.4 Security of the Sakai-Kasahara IBE Scheme 187

10.5 Summary 188

Reference 189

11 Hierarchial IBE and Master Secret Sharing 191

11.1 HIBE Based on Boneh-Franklin IBE 193
11.1.1 GS HIBE (Basic) Root Setup 194
11.1.2 GS HIBE (Basic) Lower-Level Setup 194
11.1.3 GS HIBE (Basic) Extract 194
11.1.4 GS HIBE (Basic) Encrypt 194
11.1.5 GS HIBE (Basic) Decrypt 195

11.2 Example of a GS HIBE System 195
11.2.1 GS HIBE (Basic) Root Setup 196
11.2.2 GS HIBE (Basic) Lower-Level Setup 196
11.2.3 GS HIBE (Basic) Extraction of Private Key 196
11.2.4 GS HIBE (Basic) Encryption 197
11.2.5 GS HIBE (Basic) Decryption 197

11.3 HIBE Based on Boneh-Boyen IBE 197
11.3.1 BBG HIBE (Basic) Setup 198
11.3.2 BBG HIBE (Basic) Extract 199

xiContents

11.3.3 BBG HIBE (Basic) Encryption 199
11.3.4 BBG HIBE (Basic) Decryption 199

11.4 Example of a BBG HIBE System 200
11.4.1 BBG HIBE (Basic) Setup 200
11.4.2 BBG HIBE (Basic) Extraction of Private Key 200
11.4.3 BBG HIBE (Basic) Encryption 201
11.4.4 BBG HIBE (Basic) Decryption 201

11.5 Master Secret Sharing 201

11.6 Master Secret Sharing Example 202

References 204

12 Calculating Pairings 207

12.1 Pairing-Friendly Curves 207
12.1.1 Relative Efficiency of Parameters of Pairing-

Friendly Curves 209

12.2 Eliminating Irrelevant Factors 210
12.2.1 Eliminating Random Components 211
12.2.2 Eliminating Extension Field Divisions 214
12.2.3 Denominator Elimination 215

12.3 Calculating the Product of Pairings 216

12.4 The Shipsey-Stange Algorithm 217

12.5 Precomputation 221

References 222

Appendix: Useful Test Data 225

About the Author 229

Index 231

4
Divisors and the Tate Pairing

This chapter introduces divisors, which are then used to construct the Tate
pairing. The Tate pairing in turn provides the basis for many IBE schemes,
including the Boneh-Franklin, Bohen-Boyen, and Sakai-Kasahara schemes. The
discussion of the Tate pairing here is designed to provide an overview of the
pairing, its properties, and how to calculate it. Further detail of the properties
of the Tate pairing can be found in [1, 2].

The Tate pairing by itself turns out to be unsuitable for cryptographic
applications because it frequently returns the value 1, but by modifying one of
the inputs to the Tate pairing using either a distortion map or a point on the
twist of an elliptic curve, it is easy to overcome this limitation.

4.1 Divisors

The divisors discussed in this section are very different from those discussed in
Chapter 2, but they unfortunately share the same name. In this context, a
divisor is a way of characterizing a function f based only on its zeroes, where
f (x) = 0, and poles, where f (x) = ±∞, like when dividing by zero. We say that
a function f (x) has a pole at infinity if f (1/x) has a pole at x = 0, so that a
polynomial of degree n has a pole of degree n at infinity. Similarly, we say that
a function f (x) has a zero at infinity if f (1/x) has a zero at x = 0. For example,
the function

f (x) =
(x − 1)2

(x + 2)3 = (x − 1)2 (x + 2)−3

67

68 Introduction to Identity-Based Encryption

has a zero of order 2 at x = 1, a zero of order 1 at infinity, and a pole of order
3 at x = −2. Because a divisor characterizes a function based on its zeroes and
poles, two functions that differ by a constant will have the same divisor.

4.1.1 An Intuitive Introduction to Divisors

We keep track of the zeroes and poles of a rational function f in what we call
a divisor, which we write as div (f). We write such a divisor as the sum of the
points where f has a zero or pole weighted by the multiplicities of the zeroes
and poles, with the convention that zeroes get positive weights according to their
multiplicities and poles get negative weights according to their multiplicities. In
the example above, we write div (f) = 2(1) + (∞) − 3(−2), to indicate that f
has a zero of order 2 at x = 1, a zero or order 1 at infinity, and a pole of order
3 at x = −2. In general, if we can write

f (x) = �
i

(x − x i)ai

then we write

div (f) = ∑
i

ai (x i)

The notation for divisors can be a bit tricky, and we will need to be able
tell from the context that we dealing with divisors instead of numbers, so that
we are not tempted to treat divisors as numbers, trying to simplify expressions
like 2(1) − 3(−2) to get a number instead of a divisor.

Note that multiplying rational functions corresponds to addition of their
divisors and division of rational functions corresponds to subtraction of their
divisors. So if we have f (x) as defined above and

g (x) =
(x + 2)3

(x + 1)4

then

f (x)g (x) =
(x − 1)2

(x + 2)3
(x + 2)3

(x + 1)4

=
(x − 1)2

(x + 1)4

69Divisors and the Tate Pairing

which corresponds to adding the divisors:

div (fg) = div (f) + div (g)

= 2(1) + (∞) − 3(−2) + 3(−2) + (∞) − 4(−1)

= 2(1) + 2(∞) − 4(−1)

We can formalize this informal description of divisors with the following
definitions.

Definition 4.1

A formal sum of a set S is series {s0 , s1 , s2 , . . .} of elements of S. A formal
sum is often written using a placeholder, with the understanding that the
placeholder is not to be evaluated.

Example 4.1

(i) A power series is a formal sum which we usually write as
a0 + a1x + a2x2 + . . . , where each ai ∈ S for some set S. We write
a power series with the understanding that the placeholder x is not
to be evaluated, and we could also write the same power series as
{a0 , a1 , a2 , . . .}.

(ii) If P = {P1 , P2 , . . . Pn } is a set of points on an elliptic curve, then
D = a1 (P1) + a2 (P2) + . . . + an (Pn) is a formal sum of the ele-
ments of P. In this case, we understand that in D the points in the
set P are just placeholders like the variable x in a power series, and
are not to be evaluated.

Definition 4.2

Let E be an elliptic curve. A divisor on E is a formal sum of the form

D = ∑
P ∈E

nP (P)

where each nP is an integer and all but finitely many nP are zero.

Example 4.2

For points P1 and P2 on an elliptic curve, D = (P1) + 2(P 2) − 3(O) is a
divisor.

Definition 4.3
We say that a divisor D is a principal divisor if there is a rational function f
such that D = div (f). An equivalent definition is that a divisor D on an elliptic
curve is principal if we can write

70 Introduction to Identity-Based Encryption

D = ∑
i

ai (Pi)

where �ai = 0 and �ai P i = O, with the last sum using the addition of points
on an elliptic curve. In particular, if P is a point of order n, then the divisor
n (P) − n (O) is a principal divisor.

Example 4.3

(i) Let P1 , P2 and P3 be points on an elliptic curve with P3 = P1 +
P2 . Then D = (P1) + (P 2) + (−P 3) − 3(O) is a principal divisor.

(ii) Let P be a point on an elliptic curve of order n. Then D = n (P) −
n (O) is a principal divisor.

Definition 4.4

If E is an elliptic curve and

D = ∑
P ∈E

nP (P)

is a divisor then the support of D is the set of all points P such that nP ≠ 0.

Example 4.4

For the divisor D = (P1) + (P 2) + (−P 3) − 3(O), the support of D is the set
{P 1 , P2 , −P3 , O }.

Definition 4.5

Let D1 and D2 be divisors. Then we say that D1 and D2 have disjoint support
if the intersection of the support of D1 and the support of D2 is the empty
set, or D1 ∩ D2 = ∅.

Example 4.5

(i) The divisors D1 = (P1) − (O) and D2 = (P1 + R) − (R) have dis-
joint support as long as {P 1 , O } ∩ {P 1 + R, R } = ∅.

(ii) The divisors D 1 = (P) − (O) and D 2 = (Q) − (O) do not have dis-
joint support.

We can think of the divisors as keeping track of where the graph of an
elliptic curve E intersects the graph of a function f (x), or where E = f (x), so
they keep track of zeroes and poles of E = f (x). In particular, we get a zero
when E = f (x), or when the function f (x) crosses the elliptic curve E and we
get a pole when f (x) has a pole.

71Divisors and the Tate Pairing

The functions u and v that appear in Figure 4.1 are very important in
implementing operations on divisors, and in the following, u will always represent
a line through two points P1 = (x1 , y1) and P2 = (x2 , y2) on an elliptic curve
and v will always represent a vertical line that goes through P 3 = (x3 , y3),
where P3 = P1 + P2 .

Suppose that we do not have the case where P1 + P2 = O and neither
P1 = O nor P2 = O. Then we can write the point-slope form of a line through
(x 1 , y1) as

y − y 1 = m (x − x 1)

or

y − y 1 = −mx + mx 1 = 0

which gives us an explicit way to find the line u. Similarly, the line v is given
by

x − x 3 = 0

P2

P3

P1

u

v

P3
−

Figure 4.1 Illustration of the lines u and v in the addition of points on an elliptic curve.

72 Introduction to Identity-Based Encryption

If one of the two points is O, then u is the vertical line through the point
that is not O, and if the point (x 3 , y3) = O then v is the vertical line x = 0.
These forms of the lines (x 1 , y1) and (x 1 , y1) are shown in Figure 4.2. The
cases where either P1 = O, P 2 = O, or P 1 = P2 are shown in Algorithm 4.2,
4.3, and 4.4.

The particular points that we use to define the lines u and v should be
clear from the context, so we will usually omit the points to keep the notation
simpler. If we need to clarify which points are being used, we will write
uP1 , P2

or vP3
to indicate the line through P1 and P2 or the vertical line through

P3 , respectively. With this notation, u and v have the following divisors:

div (u) = (P1) + (P 2) + (−P 3) − 3(O)

div (v) = (P 3) + (−P 3) − 2(O)

where we have now accounted for the poles that the lines u and v have at O.
Another useful fact is what we get when we subtract the divisor of u from

the divisor of v :

P2

P3

P1

P3
−u: y y mx mx− − + = 01 1

v x x: 0− =3

Figure 4.2 Forms of the lines u and v used to add divisors on an elliptic curve.

73Divisors and the Tate Pairing

div (u) − div (v) = div (u /v) (4.1)

= (P1) + (P 2) + (P 3) − (O)

If we have two divisors of the form:

D1 = (P1) − (O) + div (f 1)

D2 = (P2) − (O) + div (f 2)

we can add the two divisors to get

D1 + D2 = (P1) + (P 2) − 2(O) + div (f 1 f2) (4.2)

Solving for (P1) + (P 2) in (4.1) and substituting the result into (4.2) we find
that

D1 + D2 = (P3) − (O) + div (f 1 f2u /v) (4.3)

So the divisors of the lines u and v provide a way to add two divisors and
keep the result in the form (P) − (O) + div (f).

To clarify how this works, we will now step through a calculation of the
sum of two divisors, where the arithmetic is done on the curve y2 = x3 + 1
over �5 , as is defined in Table 3.2.

In particular, we consider the divisor D = (P̂ 2) − (O) and see what we
get when we add it to itself. Using (4.3) and the fact that we can also write
the divisor D as div (1) we find that

D + D = (P̂ 2) − (O) + div (1) + (P̂ 2) − (O) + div (1)

= (P̂1) − (O) + div (u /v)

Now u is the line tangent to the elliptic curve at P̂ 2 , and v is the line
connecting P̂2 + P̂2 = P̂1 and −(P̂2 + P̂2) = P̂ 2 . Solving for u and v we find
that we have y − 4 = 0 for the line u, or y + 1 = 0 in �5 . Similarly, we have
x = 0 for the line v. Substituting these for u and v we get that

D + D = (P̂1) − (O) + div�y + 1
x �

If we add the divisor D to this sum one more time we find that we are
just left with the divisor of a rational function when the terms of the divisor
involving points on the curve cancel each other when we reach

74 Introduction to Identity-Based Encryption

3D = 3(P̂ 2) − 3(O) because P̂2 is a point of order 3. At the next step, the line
u through P̂1 and P̂2 is the vertical line x = 0, since x = 0 is the common x
coordinate that P̂ 1 and P̂2 share. We define the vertical line v through the
point P̂ 1 + P̂2 = O to be 1. Thus, we have

3D = 3(P̂ 2) − 3(O)

= (P̂ 2 + P̂1) − (O) + div�y + 1
x

u
v�

= (O) − (O) + div�y + 1
x

x
1�

= div (y + 1)

Definition 4.6

If D is a divisor of the form

D = ∑
i

ai (Pi)

then we define what it means to evaluate a rational function f at D by

f (D) = �
i

f (Pi)ai

Example 4.6

(i) If D = 2(P1) − 3(P 2) then

f (D) = f (P1)2 f (P2)−3

=
f (P1)2

f (P2)3

(ii) If P = (2, 3) and Q = (0, 1) are points on E /�11 and D is the divisor
D = (P) − (Q) and f is the rational function f (x, y) = y + 1, then

f (D) =
3 + 1
1 + 1

= 4 � 2−1 = 4 � 6 ≡ 2(mod 11)

In many cases, it is possible to exchange the roles of a function f and a
divisor D in expressions like f (D). This is formalized in the following.

75Divisors and the Tate Pairing

Property 4.1 (Weil Reciprocity)

Let f and g be rational functions defined on some field F. If div (f) and div (g)
have disjoint support then we have that f (div (g)) = g (div (f)).

Example 4.7

Suppose that we have two rational functions f and g defined on �11 where

f (x) =
x − 2
x − 7

and

g (x) =
x − 6
x − 5

so that we have

div (f) = (2) − (7)

and

div (g) = (6) − (5)

then

f (div (g)) =
f (6)
f (5)

=
7
4

= 7 � 3 = 10(mod 11)

and

g (div (f)) =
g (2)
g (7)

=
5
6

= 5 � 2 = 10(mod 11)

Definition 4.7

Divisors D1 and D2 are equivalent if they differ by a principal divisor, that is,
D = D 1 − D2 is a principal divisor.

Example 4.8

(i) If f is a rational function, the divisors (P) − (O) and (P) − (O) +
div (f) are equivalent.

76 Introduction to Identity-Based Encryption

(ii) We can see that (P + R) − (R) is equivalent to (P) − (O) by using
the line u that goes through the points P, R and −(P + R) and the
line v that goes through the points −(P + R) and P + R. Then we
have that

div (u) = (P) + (R) + (−(P + R)) − 3(O)

div (v) = (−(P + R)) + (P + R) − 2(O)

so that

(P) − (O) = (P + R) − (R) + div (u /v)

So the difference between (P + R) − (R) and (P) − (O) is a principal
divisor, since it is the divisor of the rational function u /v, and (P + R) − (R)
is equivalent to (P) − (O).

4.2 The Tate Pairing

Now that we have defined divisors and how to manipulate them, we can define
the Tate pairing and describe how to calculate it. The Tate pairing operates
on pairs of points P ∈ E (�q) [n] and Q ∈ E (�q k), and produces a result in
�*q k . We write e (P, Q) for the Tate pairing of the points P and Q. For a point
P of order n, to get e (P, Q) we first find a rational function fP so that
div (fP) is equivalent to n (P) − n (O) and then evaluate fP at a divisor equivalent
to (Q) − (O). We can summarize this in the following.

Definition 4.8

Let E /�q be an elliptic curve, P ∈ E (�q) [n] and Q ∈ E (�q k). Let fP be a rational
function with div (fP) equivalent to n (P) − n (O) and AQ be a divisor equivalent
to (Q) − (O) with the support of div (fP) and AQ disjoint. Then the Tate
pairing is defined to be e (P, Q) = fP (AQ). This definition does not produce
a unique value, and will include a constant that is an nth power of some element
of �q k .

It is not immediately obvious why the Tate pairing is well defined by this
definition. So we should convince ourselves that this definition is actually
independent of our choices for fP and AQ . In doing so, we will see why the
Tate pairing is only defined up to multiplication by an nth power of some
constant. In the following we will see that it is easy to get rid of this unwanted
constant, leaving a unique value.

Note that fP is defined up to a constant multiple. Applying the definition
of evaluating a divisor at a function to such a constant multiple shows that this

77Divisors and the Tate Pairing

has no influence on the value of fP (AQ), so it is independent of the choice of
fP .

Now suppose that D1 and D2 are both divisors equivalent to (Q) − (O),
say D1 = D2 + div (g) for some rational function g . To be careful, we also
need to assume that the support of div (fP) is disjoint from the support of
div (g). Then we have that

fP (D1) = f P (D2 + div (g))

= fP (D2) fP (div (g))

= fP (D2)g (div (f P)) (by Weil reciprocity)

= fP (D2)g (n (P) − n (O))

= fP (D2)g ((P) − (O))n

We can then abuse the notation of congruences slightly to write this as

fP (D1) ≡ fP (D2)

which we think of as meaning that fP (D1) = fP (D2) up to a constant that is
an nth power.

The examples of adding divisors above show how to find a divisor equiva-
lent to n (P) − n (O): we can add the divisor (P) − (O) to itself n times by
using the divisors div (u) and div (v) that we get from the lines through various
points on the elliptic curve, and after reaching n (P) − n (O) we will be left
with a divisor of a rational function that we call fP when all of the terms
involving the point P disappear. To avoid the troubles with evaluating a function
at the point at infinity that appears in (Q) − (O), we can pick a random point
R on our elliptic curve and evaluate fP at (Q + R) − (R) instead, which is
equivalent to the divisor (Q) − (O).

Because the point P is of order n, if we repeatedly add the divisor (P) −
(O) to get n (P) − n (O) using the technique that is summarized in (4.3), we
find that we end up with a divisor of a rational function that is the product
of terms of the form u /v, where u is the line through two points (the points
P1 and P2 in Figure 4.1, for example) on our elliptic curve and v is the vertical
line that passes though the point that is the sum of the same two points (the
point P3 in Figure 4.1, for example).

Suppose that AQ is a divisor of the form (Q + R) − (R) that we get from
a random R ≠ O. Note that the requirement that the support of the divisors
n (P) − n (O) and AQ are disjoint means that Q + R ≠ P, and R ≠ P. We
exclude these cases because they either reduce the value of the pairing to zero
by introducing a factor of zero in a calculation, or cause a division by zero

78 Introduction to Identity-Based Encryption

error. An examination of Algorithms 4.2 through 4.4 should clarify the ways
in which this can happen.

To give an example of how this works, we will use the same example that
we used above to find e (P̂2 , P̂2). We found that 3(P̂ 2) − 3(O) is equivalent
to the divisor div (y + 1), so we have f P̂2

= y + 1. Next, we need a random
point to add to P̂ 2 , for which we pick P̂4 , so we want to evaluate f P̂2

at
(P̂2 + P̂4) − (P̂ 4) = (P̂ 3) − (P̂ 4), or we want to find f P̂2

(P̂3) /f P̂2
(P̂4). Note

that it is possible to pick a random point that causes division by zero, for
example if we picked the point P̂2 in this example. If this happens, we can just
pick another random point until we find one that works. Substituting the
appropriate values from Table 3.2, we find that

e (P̂2 , P̂2) =
f P̂2

(P̂3)

f P̂2
(P̂4)

=
3
4

(4.4)

= 3 � 4−1 = 2 ∈ �5

As mentioned above, the Tate pairing has an additional multiplicative
factor of r n for some r ∈ �q k , so that we actually get e (P, Q) = a � rn for when
we calculate it. From Property 2.13 we have that for any � ∈ �q k we have that
� q k − 1 = 1, so if we raise a � r n to the power (qk − 1)/n we get that

(a � r n)(q k − 1)/n = a (q k − 1)/n � 1 = a (q k − 1)/n

so that such an exponentiation eliminates the extra multiplicative factor and
leaves a unique result. Thus while e (P, Q) is not unique, the additional exponen-
tiation that gives us

e (P, Q)(q k − 1)/n

determines a unique value, and thus more suitable for many uses. The use of
such an exponentiation to determine a unique value is called the final exponentia-
tion and the unique value is called the reduced pairing.

Example 4.9

(i) Consider the case where we have E /�11 : y2 = x3 + x and
P = (5, 3) ∈ E (�11) [3]. To find fP (x, y) we want to find the rational
function so that div (fP) is equivalent to the divisor 3(P) − 3(O).
We get this through a repeated application of (4.3).

79Divisors and the Tate Pairing

We want to find

3(P) − 3(O) = 3((P) − (O))

= ((P) − (O)) + ((P) − (O)) + ((P) − (O))

We can start calculating this by first finding

2(P) − 2(O) = 2((P) − (O))

= ((P) − (O)) + ((P) − (O))

by

(P) − (O) + (P) − (O) = (P) − (O) + div (1) + (P) − (O) + div (1)

= (2P) − (O) + div (y + 2x + 9)

Then

3(P) − 3(O) = (2P) − (O) + div (y + 2x + 9) + (P) − (O) + div (1)

= (3P) − (O) + div (y + 2x + 9)

= (O) − (O) + div (y + 2x + 9)

= div (y + 2x + 9)

so that

fP (x, y) = y + 2x + 9

If we have Q = (7, 8) and R = (10, 3), then Q + R = (9, 10)
and we evaluate fP at AQ = (Q + R) − (R) we get

fP ((Q + R) − (R) =
fP (Q + R)

f P (R)
=

4
10

= 4 � 10−1 = 4 � 10 ≡ 7(mod 11)

Thus e (P, Q) = fP (AQ) = 7.

(ii) Consider the case where we have E /�11 : y2 = x3 + 1 and
P = (5, 4) ∈ E (�11) [4]. Because P is of order 4, to find fP (x, y) we
want to find the rational function so that div (fP) is equivalent to
the divisor 4(P) − 4(O). We get this through a repeated application
of (4.3).

80 Introduction to Identity-Based Encryption

We want to find

4(P) − 4(O) = 4((P) − (O))

= ((P) − (O)) + ((P) − (O)) + ((P) − (O)) + ((P) − (O))

We can start calculating this by first finding

2(P) − 2(O) = 2((P) − (O))

= ((P) − (O)) + ((P) − (O))

by

(P) − (O) + (P) − (O) = (P) − (O) + div (1) + (P) − (O) + div (1)

= (2P) − (O) + div�y + 3x + 3
x + 1 �

Then

3(P) − 3(O) = (2P) − (O) + div�y + 3x + 3
x + 1 � + (P) − (O) + div (1)

= (3P) − (O) + div� (y + 3x + 3)2

(x + 1)(x + 6)�
And finally

4(P) − 4(O) = (3P) − (O) + div� (y + 3x + 3)2

(x + 1)(x + 6)� + (P) − (O) + div (1)

= (4P) − (O) + div�(y + 3x + 3)2

x + 1 �
= (O) − (O) + div�(y + 3x + 3)2

x + 1 �
= div�(y + 3x + 3)2

x + 1 �
so that

81Divisors and the Tate Pairing

f P (x, y) =
(y + 3x + 3)2

x + 1

If we have Q = (5, 7) and R = (9, 9), then Q + R = (0, 1) and
we evaluate fP at AQ = (Q + R) − (R) we get

f P ((Q + R) − (R)) =
f P (Q + R)

f P (R)
=

5
8

= 5 � 8−1 = 5 � 7 ≡ 2(mod 11)

Thus e (P, Q) = fP (AQ) = 2.

4.2.1 Properties of the Tate Pairing

As defined earlier, the Tate pairing has the following properties:

1. The Tate pairing is nondegenerate, that is, for each
P ∈ E (�q) [n]/{O } there is some Q ∈ E (�q k) with e (P, Q) ≠ 1.

2. The Tate pairing is bilinear, that is, for each P, P1 , P2 ∈ E (�q) [n]
and Q , Q1 , Q2 ∈ E (�q k) we have e (P1 + P2 , Q) =
e (P1 , Q) e (P 2 , Q) and e (P, Q 1 + Q2) = e (P, Q 1) e (P, Q2).

To convince ourselves that the Tate pairing is bilinear, we need to consider
two separate cases.

To see that the Tate pairing is linear in its first parameter, let f P1
, f P2

,
and f P1 + P2

be rational functions such that we have

div � f P1
� = n (P1) − n (O)

div � f P2
� = n (P2) − n (O)

and

div � f P1 + P2
� = n (P1 + P2) − n (O)

Note that the divisor

D = (P1 + P2) − (P1) − (P 2) + (O)

is a principal divisor so it is the divisor of some rational function, say

82 Introduction to Identity-Based Encryption

div (g) = D

then

div � f P1 + P2
� − div (f1) − div (f2) = n (P1 + P2) − n (P1) − n (P 2) − n (O)

= nD = ndiv (g) = div (g n)

so that

div � f P1 + P2
� = div (f1) + div (f2) + div (g n)

so we can write

f P1 + P2
= f1 f2 gn

Thus

e (P1 + P2 , Q) = f P1 + P2
(AQ) = f P1

(AQ) f P2
(AQ) gn (AQ)

= e (P1 , Q) e (P2 , Q) gn (AQ)

So if we are ignoring nth powers, we find that

e (P1 + P2 , Q) = e (P1 , Q) e (P2 , Q)

as desired.
To see that the Tate pairing is bilinear in the second parameter, let

AQ 1 + Q 2
be a divisor equivalent to (Q 1 + Q2) − (O), AQ 1

be a divisor equivalent
to (Q 1) − (O) and AQ 2

be a divisor equivalent to (Q 1) − (O). Then
AQ 1 + Q 2

− AQ 1
− AQ 2

is equivalent to

D = (Q 1 + Q2) − (Q 1) − (Q 2) + (O)

which is a principal divisor. So AQ 1 + Q 2
is equivalent to AQ 1

+ AQ 2
because

they differ by a principal divisor. Thus we can write

e (P, Q1 + Q2) = f P �AQ 1 + Q 2
�

= f P �AQ 1
+ AQ 2

� = f P �AQ 1
� f P �AQ 2

�
= e (P, Q 1) e (P, Q2)

83Divisors and the Tate Pairing

A mapping that is nondegenerate and bilinear and is also efficiently com-
putable is called a pairing, and such mappings are the fundamental primitives
from which many cryptographic algorithms are constructed. On the other hand,
the Tate pairing also has the following property that limits its usefulness because
it returns the value 1 in many cases.

Property 4.2 (Galbraith) [3]

Let P ∈ E (�q) [n]\{O } and n relatively prime to q. Then to have
e (P, P) ≠ 1, we must have k = 1.

So for an embedding degree k > 1 we have e (P, P) = 1, which also means
that e (aP, bP) = e (P, P)ab = 1 for integers a and b, so that the Tate pairing
may not seem very useful at first. The following result provides insight into
how to overcome this limitation.

Property 4.3 (Verheul) [4]

Let n be a prime, P ∈ E (�q) [n]\{O }, Q ∈ E (�q k) be linearly independent from
P, and k > 1. Then we have that e (P, Q) is nondegenerate.

So if we have P ∈ E (�q) [n] and a nontrivial embedding degree, that is,
we have k > 1, then one way to make sure that the Tate pairing e (P, Q) is
nondegenerate is to make sure that Q is linearly independent of P. One way
to do this is to use a distortion map, so that instead of computing e (P, Q),
we compute e (P, � (Q)) instead, where � is an appropriate distortion map.
Another way is to compute e (P, � d (Q)) where Q ∈ E ′ is on the twist of the
elliptic curve E and � d : E ′ → E is the mapping defined in Section 3.3.1. In
either case, we denote the resulting pairing by ê (P, Q), where either
ê (P, Q) = e (P, � (Q)) or ê (P, Q) = e (P, � d (Q)) as appropriate and call such
an ê the modified Tate pairing.

Example 4.10

(i) (Distortion Map). From Example 4.1(ii), we have where
E /�11 : y2 = x3 + 1 and P = (5, 4) ∈ E (�11) [4], we get

f P (x, y) =
(y + 3x + 3)2

x + 1

If we have Q = (5, 7) and R = (9, 9), then Q + R = (0, 1) and
we evaluate fP at AQ = (Q + R) − (R) we get e (P, Q) =
fP (AQ) = 2 ∈ �11 , so that for the reduced Tate pairing we get

e (P, Q)(q k − 1)/n = 2(112 − 1)/4 = 230 ≡ 1(mod 11)

84 Introduction to Identity-Based Encryption

In this case, � (x, y) = (�x, y), where � = 5 + 3 � i, is a distortion
map for the point Q, and we find that � (Q) = (3 + 4 � i, 7) and
that � (Q) + R = (1 + 4 � i, 5). Thus, we have that

fP ((� (Q) + R) − (R)) =
fP (� (Q) + R)

fP (R)

=
1 + 9i

8
= 7 + 8i

so that for the reduced modified Tate pairing we get

e (P, � (Q))(q k − 1)/n = (7 + 8i)(112 − 1)/4 = (7 + 8i)30 ≡ 10(mod 11)

(ii) (Twist). We have that E ′ : y 2 = x3 + 10 is the quadratic twist of
E /�11 : y2 = x3 + 1 that is created using the quadratic nonresidue
v = 10. If P = (5, 4) ∈ E (�11) [4], then from Example 4.1(ii) we get

fP (x, y) =
(y + 3x + 3)2

x + 1

In this case, we have

�2 (x, y) = (v −1x, v −3/2y) = (10 � x, i � y)

If we have Q = (3, 2) ∈ E ′ and R = (9, 9), then �2 (Q) =
(8, 2i) then �2 (Q) + R = (5 + 8i, 8i). Thus we have that

fP ((�2 (Q) + R) − (R) =
fP (�2 (Q) + R)

fP (R)

=
4 + 8i
6 + 8I

= 5i

so that for the reduced modified Tate pairing we get

e ((P, �2 (Q))(q k − 1)/n = (5i)(112 − 1)/4 = (5i)30 ≡ 10(mod 11)

4.3 Miller’s Algorithm

The technique that we used above to find a divisor equivalent to n (P) − n (O),
in which we iteratively find divisors equivalent to (P) − (O), 2(P) − 2(O),

85Divisors and the Tate Pairing

. . . , up to n (P) − n (O) by a repeated application of (4.3) will certainly work,
but it is extremely inefficient. In a typical cryptographic application, n is typically
at least 2160, so iterating in this way is impractical. Instead, the way we calculate
n (P) − n (O) is by the double-and-add technique, and finding a divisor equiva-
lent to n (P) − n (O) in this way is called Miller’s algorithm [5]. Miller’s algorithm
is based on the observation that it is easy to generalize (4.3) to divisors

D 1 = (aP) − (O) + div (f 1)

and

D2 = (bP) − (O) + div (f 2)

to find that

D1 + D2 = (a + b)P − (O) + div� f1 f2
uaP, bP
v (a + b)P

�
We can formalize Miller’s algorithm as follows. Pick an elliptic curve E

on which all of the following calculations will be performed. Let
P ∈ E (�q) [n] and Q ∈ E (�q k) with

n = ∑
t

i = 0
bi 2i s

so that (bi , . . . , b1 , b0) is the binary expansion of n. We start with f = 1,
S = P, and R a random point on E. We then do a double-and-add iteration
through the binary expansion of n, performing the doubling step at each iteration
and the adding step if the bit we are at is a 1. This will let us build the rational
function equivalent to n (P) − n (O) out of the repeatedly doubled terms, and
we evaluate each of these terms at (Q + R) − (R) as we calculate them. We
do this by the following algorithms.

Algorithm 4.1: TatePairing (Miller’s algorithm for computing the Tate pairing)
INPUT: Elliptic curve E : y2 = x3 + ax + b, P ∈ E [n] with
n = �t

i = 0 bi 2i, Q
OUTPUT: e (P, Q)

1. f ← 1, t ← log2 n, S ← P, R ← a random point of E, R ≠ O,
Q + R ≠ O

86 Introduction to Identity-Based Encryption

2. For i ← t − 1 down to 0

3. f ← f 2 uS, S (Q + R)v2S (R)
v2S (Q + R)uS, S (R)

4. S ← 2S

5. If bi = 1

6. f ← f
uS, P (Q + R)vS + P (R)
vS + P (Q + R)uS, P (R)

7. S ← S + P

8. Return f

Algorithm 4.2: v
INPUT: P, Q
OUTPUT: vP (Q)

1. If P = O

2. Return 1

3. Return x Q − xP

Algorithm 4.3: tangent_u
INPUT: P, Q on an elliptic curve E : y 2 = x3 + ax + b
OUTPUT: uP , P (Q)

1. If P = O

2. Return 1

3. If yP = 0

4. Return v (P, Q)

5. m ←
3x 2

P + a
2yP

6. Return yQ − yP − mxQ + mxP

Algorithm 4.4: u
INPUT: P1 , P2 , Q
OUTPUT: uP1 , P2

(Q)

1. If P1 = O

2. Return v (P2 , Q)

3. If P2 = O or P 1 + P2 = O

4. Return v (P1 , Q)

87Divisors and the Tate Pairing

5. If P1 = P2

6. Return tangent_u (P1 , Q)

7. m ←
yP2

− yP1

xP2
− xP1

8. Return yQ − yP1
− mxQ + mxP1

References

[1] Lang, S., Elliptic Functions, New York: Springer-Verlag, 1987.

[2] Silverman, J., The Arithmetic of Elliptic Curves, New York: Springer-Verlag, 1986.

[3] Galbraith, S., ‘‘Supersingular Curves in Cryptography,’’ Proceedings of Asiacrypt 2001,
Gold Coast, Australia, December 9–13, 2001, pp. 495–513.

[4] Verheul, E., ‘‘Evidence That XTR Is More Secure Than Supersingular Elliptic Curve
Cryptosystems,’’ Journal of Cryptology, Vol. 17, No. 4, 2004, pp. 277–296.

[5] Miller, V., ‘‘The Weil Pairing and Its Efficient Calculation,’’ Journal of Cryptology,
Vol. 17, No. 4, 2004, pp. 235–261.

	Contents
	4
Divisors and the Tate Pairing
	4.1 Divisors
	4.1.1 An Intuitive Introduction to Divisors

	4.2 The Tate Pairing
	4.2.1 Properties of the Tate Pairing

	4.3 Miller’s Algorithm

