
Machine Learning
Lecture 10: Variational Autoencoder

Nevin L. Zhang
lzhang@cse.ust.hk

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

This set of notes is based on internet resources and
Auto-encoding variational bayes DP Kingma, M Welling (2013). Auto-encoding variational

bayes. https://arxiv.org/abs/1312.6114

C Doersch (2016). Tutorial on Variational Autoencoders.
https://arxiv.org/abs/1606.05908

Nevin L. Zhang (HKUST) Machine Learning 1 / 38



Introduction to Unsupervised Learning

Outline

1 Introduction to Unsupervised Learning

2 The Task

3 The Objective function

4 Optimization

5 Generating Examples

6 Discussions

Nevin L. Zhang (HKUST) Machine Learning 2 / 38



Introduction to Unsupervised Learning

Introduction

So far, supervised learning

Discriminative methods:

{xi , yi}Ni=1 −→ p(y |x)

Generative methods:

{xi , yi}Ni=1 −→ P(y), p(x|y)

Next, unsupervised learning:

Finite mixture models for clustering [Skipped]

{xi}Ni=1 −→ P(z), p(x|z)

Varitional autoencoder for data generation and representation learning

{xi}Ni=1, p(z) −→ p(x|z) q(z|x) used in inference

Generative adversarial networks for data generation

{xi}Ni=1, p(z) −→ x = g(z)
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The Task

The Task

Suppose we have an unlabeled dataset X = {x(i)}Ni=1, where each training
example x(i) is a vector that represents an image and each component of x(i)

represents a pixel in the image.

We would like to learn a distribution p(x) from the dataset so that we can
generate more images that are similar (but different) to those in the dataset.

If we can solve this task, then we have the ability to learn very complex
probabilistic model for high dimensional data.

The ability to generate realistic looking images would be useful for video
game designers.
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The Task

The Generative Model

We assume that each image has a label z that is not observed. z is a vector
of much lower dimension that x.

We further assume that the images are generated as follows:

z ∼ p(z) = N (0, I) where I is the identity matrix

x ∼ pθ(x|z) where θ denotes model parameters

Then we have

pθ(x) =

∫
pθ(x|z)p(z)dz

Nevin L. Zhang (HKUST) Machine Learning 6 / 38



The Task

The Generative Model

In addition, we assume that the conditional distribution is a Gaussian

pθ(x|z) = N (x|µx(z,θ), σ2
x(z,θ)I)

With mean vector is µx(z,θ) and diagonal covariance matrix is
σx(z,θ)I.
The mean vector µx(z,θ) and the vector σx(z,θ) of sd’s are
deterministically determined by z via a deep neural network with
parameters θ.

So, we make use of the ability of neural network in representing complex
functions to learn complicated probabilistic models.
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The Objective function

The Likelihood Function

To learn the model parameters, we need maximize the following likelihood
function:

log pθ(X) =
N∑
i=1

log pθ(x(i))

where

log pθ(x(i)) = log

∫
pθ(x(i)|z)p(z)dz

We want to use gradient ascent to maximize the likelihood function, which
requires the gradient ∇θ log pθ(x(i)) .

The gradient is intractable because of the integration.
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The Objective function

Naive Monte Carlo Gradient Estimator

Here is a naive method to estimate pθ(x(i)) and hence the gradients.

Sample L points z(1), . . . , z(L) from p(z), and estimate pθ(x(i)) using

pθ(x(i)) ≈ 1

L

L∑
l=1

pθ(x(i)|z(l))

Then we can compute ∇θ log pθ(x(i)).

Unfortunately, this would not work.

The reason is that x is high-dimensional (thousands to millions of
dimensions). Given z, pθ(x|z) is highly skewed, taking non-negligible
values only in a very small region.
To state it another way, for a given data point x (i), pθ(x(i)|z) takes
non-negligible values only for z from a very small region. As such, L
needs to be extremely large for the estimate to be accurate.
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The Objective function

Recognition Model

To overcome the aforementioned difficulty, we introduce a recognition
model qφ(z|x)

qφ(z|x) = N (z|µz(x, φ), σ2
z (x,φ)I)

The mean vector µz(x,φ) and the vector σz(x,φ) of sd’s are
deterministically determined by z via a deep neural network with
parameters φ.

We hope to get from qφ(z|x(i)) samples of z for which pθ(x(i)|z) has
non-negligible values.

The question now is: How to make use of qφ(z|x) when maximize the

likelihood log pθ(X) =
∑N

i=1 log pθ(x(i)).
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The Objective function

The Variational Lower Bound

log pθ(x(i)) = Ez∼qφ(z|x(i))

[
log pθ(x(i))

]
= Ez∼qφ

[
log

pθ(x(i)|z)pθ(z)

pθ(z|x(i))

]
= Ez∼qφ

[
log

pθ(x(i)|z)pθ(z)

pθ(z|x(i))

qφ(z|x(i))

qφ(z|x(i))

]
= Ez∼qφ

[
log pθ(x(i)|z)

]
− Ez∼qφ

[
qφ(z|x(i))

pθ(z)

]
+ Ez∼qφ

[
qφ(z|x(i))

pθ(z|x(i))

]
= Ez∼qφ

[
log pθ(x(i)|z)

]
−DKL[qφ(z|x(i))||pθ(z)] + Ez∼qφ

[
qφ(z|x(i))

pθ(z|x(i))

]
= L(x(i),θ,φ) +DKL[qφ(z|x(i))||pθ(z|x(i))]

So, we have the following variational lower bound on loglikelihood, which is tight
if q has high capacity.

log pθ(x(i)) ≥ L(x(i),θ,φ)
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The Objective function

The Variational Lower Bound: Alternative Perspective
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The Objective function

The Objective Function

Our new objective is to maximize the variational bound w.r.t both θ and φ

L(x(i),θ,φ) = Ez∼qφ(z|x(i))

[
log pθ(x(i)|z)

]
−DKL[qφ(z|x(i))||pθ(z)]

Interpretation

The recognition model qφ(z|x(i)) can be viewed as a encoder that
takes a data point x(i) and probabilistically encodes it into a latent
vector z.
The decoder pθ(x|z) then takes the latent representation and
probabilistically decodes it into a vector x in the data space.
The first term in L measure how well (the distribution of) the decoded
output match the input x(i). It is the reconstruction error.
The second term is a regularization terms that encourages the posterior
distribution qφ(z|x(i)) of the encoding z to be close to the prior pθ(z).
So, the method is called variational autoencoder (VAE).
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The Objective function

Illustration of Variational Autoencoder

L(x(i),θ,φ) = Ez∼qφ(z|x(i))

[
log pθ(x(i)|z)

]
−DKL[qφ(z|x(i))||pθ(z)]
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The Objective function

Illustration of Variational Autoencoder

The encoder maps the data distribution, which is complex, to approximately
an Gaussian distribution.

The decoder maps a Gaussian distribution to the data distribution.
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The Objective function

Illustration of Variational Autoencoder

Fake images generated by picking points in the latent space and map them
back to the data space using the decoder.
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Optimization

The Need For Reparameterization

The computation of the first term L1 of L requires sampling:

L1 = Ez∼qφ(z|x(i))

[
log pθ(x(i)|z)

]
≈ 1

L

L∑
l=1

log pθ(x(i)|z(i,l))

where z(i,l) ∼ qφ(z|x(i)).

But sampling looses gradient ∇φ

While the LHS depends on φ, the RHS does not.
So, the stochastic connections from µz and σz to z makes
backpropagation impossible.
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Optimization

The Reparameterization Trick

Here is the recognition model

qφ(z|x) = N (z|µz(x, φ), σ2
z (x,φ)I)

Using the reparameterization trick, we change it into the following
equivalent form

z = µz(x, φ) + σz(x,φ)� ε, ε ∼ N (0, I)

where � is element-wise product.

Note that, now, z depends on µz , σz and ε deterministically. ε is stochastic,
but it is an input the the network.
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Optimization

The Reparameterization Trick

The reconstruction error term can be written as

L1 = Ez∼qφ(z|x(i))

[
log pθ(x(i)|z)

]
= Eε∼p(ε)

[
log pθ(x(i)|z(x(i), φ, ε))

]
≈ 1

L

L∑
l=1

log pθ(x(i)|z(i,l))

where z(i,l) = z(x(i), φ, ε(l)) = µz(x(i), φ) + σz(x(i),φ)� ε(l), and
ε(l) ∼ N (0, I).

Gradient ∇θ,φL1 can now be computed because, for each given ε, the
network is deterministic.
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Optimization

The Regularization Term

The second term of L is L2 = −DKL[qφ(z|x(i))||pθ(z)].

The two distributions involved are both Gaussian. Hence the term has a
closed-form:

L2 =
1

2

J∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
where J is the dimension of z, σ

(i)
j is the j-th component of σz(x(i),φ), and

µ
(i)
j is the j-th component of µz(x(i),φ)

The gradient ∇φL2 is straightforward compute
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Optimization

The Final Objective Function

Putting together, this is the objective function that we maximize using
gradient ascent

L ≈ 1

L

L∑
l=1

log pθ(x(i)|z(i,l)) +
1

2

J∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
where z(i,l) = µz(x(i), φ) + σ2

z (x(i),φ)� ε(l), and ε(l) ∼ N (0, I).

We have discussed how to compute the gradient ∇θ,φL. Using the gradient,
we can estimate θ and φ simultaneously using gradient ascent.

The hyperparameter L is usually set to 1.
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Optimization

Comparison with Naive Monte Carlo

Earlier, we mentioned a naive method for optimizing the parameters θ of the
generative model that involves the following objective:

log pθ(x(i)) ≈ log
1

L

L∑
l=1

pθ(x(i)|z(l)) (1)

where the values of z are sampled from the prior p(z). Those values do not
depend on x(i) and do not give high probabilities to x(i). The RHS is a poor
approximation of log pθ(x(i)).

Here is the our final objective function:

L ≈ 1

L

L∑
l=1

log pθ(x(i)|z(i,l)) +
1

2

J∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
(2)

where the values of z are sampled in such a way that they depend upon x(i).
Those values usually give high probabilities to x(i). The LHS is a better
approximation (lower bound) of log pθ(x(i)).
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Generating Examples

Example Generation

During learning, both encoder and decoder are trained simultaneously.

To generate examples, we need on the decoder.

z ∼ p(z), x ∼ pθ(x|z)
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Generating Examples

Example Generation

One way to generate examples is to sample z from N (0, I) and then sample
x from pθ(x|z).

Here are images sampled from VAE’s learned from the MNIST dataset.
Note that several values are used for the dimensionality of z.
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Generating Examples

Example Generation

Alternatively, we can manually pick z and
sample x from pθ(x|z). This allows us to
interpret each dimension of z.

Here are images sampled from VAE’s
learned from the Frey Face dataset. We
can see that

X-axis represents head pose, and
Y-axis represent degree of smile.
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Discussions

Discussions

The key reason for the excitement in VAE is that it shows that, by
combining deep learning and the probabilistic approach, we can now learn
complicated and high quality probabilistic models.

In terms of specific functionality,

The decoder p(x|z) of VAE can be used to generate samples (images)
that are similar (but different) to those in the training set.
The decoder gives a distribution p(x) =

∫
p(x|z)p(z)dz, which can be

approximated using the variational lower bound.
The encoder q(z|x) can be used to obtain low dimension latent
representation of data.
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Discussions

Autoencoders

While variational autoencoder is a probabilistic model, autoencoder is
deterministic. The model parameters are trained by minimizing the
reconstruction errors

L(x, x′) = ||x− x′||2

It is designed to learn a latent representation of data.

However, it does not define a probability distribution p(x) over data space
and does not to generate new samples.

Recent work on AE: He, Kaiming, et al. ”Masked autoencoders are scalable
vision learners.” arXiv preprint arXiv:2111.06377 (2021).
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Discussions

Denoising Autoencoders

Denoising autoencoder is a probabilistic model. The input x is randomly
corrupted using C (x̃|x) to get x̃ and the weights are optimized to minimize
the following objective function:

−Ex∼pdataEx̃∼C(x̃|x) log p(x′ = x|z(x̃))

It is more robust than autoencoder as a tool for learning latent
representation of data.

However, it does not define a probability distribution p(x) over data space
and does not to generate new samples.
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Discussions

Data Distribution in Latent Space (MNIST)

VAE: Forces data into a normal distribution in the latent space.

DAE: Preserves class separation better.
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Discussions

Recent Developments: Flow-Based Generative Models

Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using Real NVP[J]. arXiv preprint

arXiv:1605.08803, 2016.

Kingma D P, Dhariwal P. Glow: Generative flow with invertible 1x1

convolutions[C]//Advances in Neural Information Processing Systems. 2018:

10236-10245.

Generative Model:

z ∼ pz(z) (Gaussian), x = gθ(z),
gθ(z) is invertible, i.e., exists fθ(x) such that gθ(fθ(x)) = x.
Consequently, z has the same dimensionality as x.
The model defines a distribution over inputs:

pθ(x) = pz(fθ(x))|det(
∂fθ(x)

∂x>
)|

fθ is implemented as a sequence of invertible functions, called flows,
each represented as an CNN. See references.
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Discussions

Recent Developments: Flow-Based Generative Models

Objective function for learning: maximizing the loglikelihood

log pθ(X) =
N∑
i=1

log pθ(x(i)) =
N∑
i=1

log pz(fθ(xi )) +
N∑
i=1

log |det(
∂fθ(x(i))

∂(x(i))>
)|

Intuitively, pick θ so that the CNN map images from their original space,
where they are not Gaussian distributed, to a latent space where they are
Gaussian distributed.
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Discussions

Recent Developments: Flow-Based Generative Models

Image Synthesis: z ∼ pz(z) (Gaussian), x = gθ(z)
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Discussions

Recent Developments: Flow-Based Generative Models

Image Interpolation: Take a pair of real images, encode them with the
encoder, and linearly interpolate between the latents to obtain samples.
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Discussions

Recent Developments: Flow-Based Generative Models

Semantic Manipulation:

zpos : average latent vectors with an attribute (e.g., smiling)
zneg : average latent vectors without the attribute.
Use the difference zpos − zneg as a direction of manipulation.
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