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Introduction to Unsupervised Learning

Introduction

m So far, supervised learning
m Discriminative methods:
{xi,yi}iLy = p(y[x)
m Generative methods:
{xi, i}l = P(y), p(x[y)

m Next, unsupervised learning:
m Finite mixture models for clustering [Skipped]
{xi}L1 = P(2), p(x|2)
m Varitional autoencoder for data generation and representation learning
{(x}¥,,p(z) = p(x|z)  q(z|x) used in inference
m Generative adversarial networks for data generation

{xi}1, p(z) = x = g(2)

Nevin L. Zhang (HKUST) Machine Learning 3/38



1 Introduction to Unsupervised Learning

2 The Task
3 The Objective function

4 Optimization

o1

Generating Examples

6 Discussions



The Task

The Task
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m Suppose we have an unlabeled dataset X = {x()}¥  where each training
example x() is a vector that represents an image and each component of x(?)

represents a pixel in the image.

m We would like to learn a distribution p(x) from the dataset so that we can
generate more images that are similar (but different) to those in the dataset.

m If we can solve this task, then we have the ability to learn very complex
probabilistic model for high dimensional data.

m The ability to generate realistic looking images would be useful for video
game designers.
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The Task

The Generative Model

m We assume that each image has a label z that is not observed. z is a vector
of much lower dimension that x.

m We further assume that the images are generated as follows:
z ~ p(z) =N(0,1) where | is the identity matrix

X ~ pg(x|z) where @ denotes model parameters

m Then we have

pa(x) = [ polxiz)p(z)dz
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The Task

The Generative Model

m |n addition, we assume that the conditional distribution is a Gaussian

po(x|z) = N (x|11x(z. 0), 05(2, 0)1)
m With mean vector is pux(z,0) and diagonal covariance matrix is
ox(z,0)L.
m The mean vector jx(z,0) and the vector o4(z, 8) of sd’s are
deterministically determined by z via a deep neural network with
parameters 6.

m So, we make use of the ability of neural network in representing complex
functions to learn complicated probabilistic models.

p(x|z)
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The Objective function

The Likelihood Function

m To learn the model parameters, we need maximize the following likelihood
function:

N
log po(X) = _ log po (x")
i=1

where .
log po(x") = |0g/ po(x'"|z)p(z)dz

m We want to use gradient ascent to maximize the likelihood function, which
requires the gradient Vg log pg(x(’)) )

m The gradient is intractable because of the integration.
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The Objective function

Naive Monte Carlo Gradient Estimator

m Here is a naive method to estimate pg(x(")) and hence the gradients.

Sample L points 29, ..., z(!) from p(z), and estimate pg(x()) using

L
) 1 .
po(x) = 1 3~ po(xl"2")
=1

m Then we can compute Vg log pg(x().
m Unfortunately, this would not work.

m The reason is that x is high-dimensional (thousands to millions of
dimensions). Given z, pg(x|z) is highly skewed, taking non-negligible
values only in a very small region.

m To state it another way, for a given data point x()), pg(x()|z) takes
non-negligible values only for z from a very small region. As such, L
needs to be extremely large for the estimate to be accurate.
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The Objective function

Recognition Model
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m To overcome the aforementioned difficulty, we introduce a recognition

model g4 (z|x)
qo(2[%) = N (2|p2(x, 0), 02(x, 1)

m The mean vector 1 (x, @) and the vector o,(x, ¢) of sd's are
deterministically determined by z via a deep neural network with
parameters ¢.

m We hope to get from qg(z|x()) samples of z for which pa(x()|z) has
non-negligible values.

m The question now is: How to make use of g4(z|x) when maximize the
likelihood log pa(X) = SN, log pe(x().
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The Objective function

The Variational Lower Bound

E,

log pe (x()
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So, we have the following variational lower bound on loglikelihood, which is tight

if g has high capacity.
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The Objective function

The Variational Lower Bound: Alternative Perspective
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The Objective function

The Objective Function

m Our new objective is to maximize the variational bound w.r.t both 8 and ¢

LOD,0,8) = Eyegy oy [108 o(xV]2)| — Dic [ag (2 lpo(2)]

m Interpretation

The recognition model g (2z|x(")) can be viewed as a encoder that
takes a data point x(") and probabilistically encodes it into a latent
vector z.

The decoder py(x|z) then takes the latent representation and
probabilistically decodes it into a vector x in the data space.

The first term in £ measure how well (the distribution of) the decoded
output match the input x(). It is the reconstruction error.

The second term is a regularization terms that encourages the posterior
distribution g (2z|x(")) of the encoding z to be close to the prior pg(z).
So, the method is called variational autoencoder (VAE).
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The Objective function

[llustration of Variational Autoencoder

Encoder: qq(z|x)

e

Z-space

X-space

3

Decoder: ps(x|z)

m The encoder maps the data distribution, which is complex, to approximately

an Gaussian distribution.

m The decoder maps a Gaussian distribution to the data distribution.
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The Objective function

[llustration of Variational Autoencoder
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m Fake images generated by picking points in the latent space and map them
back to the data space using the decoder.
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Optimization

The Need For Reparameterization

2z~ N(p,02I)

encode sampling decode

m The computation of the first term £; of L reqmres sampling:
L1 = E; gy (zx) ['08; po(xU } Z log po(x|2"1)
where z(") ~ q¢(z|x(i)).
m But sampling looses gradient V4

m While the LHS depends on ¢, the RHS does not.
m So, the stochastic connections from p, and o, to z makes
backpropagation impossible.
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Optimization

The Reparameterization Trick

m Here is the recognition model
G (2lx) = N (2| z(x, 9), o2 (x, H)1)
m Using the reparameterization trick, we change it into the following
equivalent form
z = piz(x,0) + 02(x,¢) © €, € ~ N(0,1)
where © is element-wise product.

m Note that, now, z depends on ., 0, and € deterministically. € is stochastic,
but it is an input the the network.

J
encode reparametrize decode
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Optimization

The Reparameterization Trick

m The reconstruction error term can be written as

Ly = EZNq¢(Z‘X(()) {|0gpe(x(i)|z)}

L
i i 1 i i
Ee~p(e) |:|Og pg(X( )|Z(X( )a (ba 6)):| ~ Z Z |Og pg(X( )‘Z( 7l))
=1

where 2(0) = z(x(), ¢, ) = 11, (x1), ) + o, (x(), ) © €, and
el) ~ N(0,1).

m Gradient Vg 4£1 can now be computed because, for each given ¢, the
network is deterministic.

L
encode reparametrize decode
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Optimization

The Regularization Term

m The second term of £ is Lo = —Dxki[q4(z|x())||pe(2)]-

m The two distributions involved are both Gaussian. Hence the term has a
closed-form:

J
= 3 2 (1 o) - 0477 - 7))

l\)\l—-

where J is the dimension of z, a}i)
,uj(-i) is the j-th component of /LZ(X(i), o)

is the j-th component of o,(x(), ¢), and

m The gradient V4L, is straightforward compute
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Optimization

The Final Objective Function

m Putting together, this is the objective function that we maximize using
gradient ascent

L J
1 ; 1 i i ’_
~ 1 2 tompolx 2 4 5 3 1+ ogl(o] ) — 0477 - (")

j=1
where 20 = 11, (x(), ¢) + 62(x(D, ) © €, and €) ~ N(0,1).

m We have discussed how to compute the gradient Vg 4L. Using the gradient,
we can estimate 6 and ¢ simultaneously using gradient ascent.

m The hyperparameter L is usually set to 1.
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Optimization

Comparison with Naive Monte Carlo

m Earlier, we mentioned a naive method for optimizing the parameters @ of the
generative model that involves the following objective:

L
. 1 .
log po(x) = log > _ pa(xV|2") (1)
1=1

where the values of z are sampled from the prior p(z). Those values do not
depend on x() and do not give high probabilities to x(). The RHS is a poor
approximation of log pg(x(").

m Here is the our final objective function:

L J
1 i i 1 i i i
~ 1 D logpa(x20) + 537 (14 leg((o")?) — (" ~ (oY) (2)
I=1 j=1
where the values of z are sampled in such a way that they depend upon x(7.
Those values usually give high probabilities to x(). The LHS is a better
approximation (lower bound) of log pg(x(").

Nevin L. Zhang (HKUST) Machine Learning 24 / 38



[y

Introduction to Unsupervised Learning

2 The Task

3 The Objective function

S

Optimization
5 Generating Examples

6 Discussions



m During learning, both encoder and decoder are trained simultaneously.
a(z]x) p(x|z)
X z 1 x'

i
—i—

— encoder| " decoder!
>
0Oz

m To generate examples, we need on the decoder.

m z~ p(z), x ~ po(x|z)

p(x|z)




Generating Examples

Example Generation

m One way to generate examples is to sample z from N(0,1) and then sample
x from pg(x|z).

m Here are images sampled from VAE's learned from the MNIST dataset.

Note that several values are used for the dimensionality of z.
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(b) 5-D latent space (¢) 10-D latent space (d) 20-D latent space

(a) 2-D latent space
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Generating Examples

Example Generation

m Alternatively, we can manually pick z and
sample x from pg(x|z). This allows us to
interpret each dimension of z.

m Here are images sampled from VAE's
learned from the Frey Face dataset. We
can see that

m X-axis represents head pose, and
m Y-axis represent degree of smile.
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Discussions

Discussions

m The key reason for the excitement in VAE is that it shows that, by
combining deep learning and the probabilistic approach, we can now learn
complicated and high quality probabilistic models.

m In terms of specific functionality,

m The decoder p(x|z) of VAE can be used to generate samples (images)
that are similar (but different) to those in the training set.

m The decoder gives a distribution p(x) = [ p(x|z)p(z)dz, which can be
approximated using the variational lower bound.

m The encoder g(z|x) can be used to obtain low dimension latent
representation of data.
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Discussions

Autoencoders

encoder decoder

m While variational autoencoder is a probabilistic model, autoencoder is
deterministic. The model parameters are trained by minimizing the
reconstruction errors

£(x,x') =[x — x|

m |t is designed to learn a latent representation of data.

m However, it does not define a probability distribution p(x) over data space
and does not to generate new samples.

m Recent work on AE: He, Kaiming, et al. "Masked autoencoders are scalable
vision learners.” arXiv preprint arXiv:2111.06377 (2021).
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Discussions

Denoising Autoencoders

X X z I

X
—)
—N
encoder
—>
—
X

[

m Denoising autoencoder is a probabilistic model. The input x is randomly
corrupted using C(X|x) to get X and the weights are optimized to minimize
the following objective function:

—Ex s Bz c(31%) 108 p(X = x(2(X))

m It is more robust than autoencoder as a tool for learning latent
representation of data.

m However, it does not define a probability distribution p(x) over data space
and does not to generate new samples.
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m VAE: Forces data into a normal distribution in the latent space.

m DAE: Preserves class separation better.



Discussions

Recent Developments: Flow-Based Generative Models

m Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using Real NVP[J]. arXiv preprint
arXiv:1605.08803, 2016.

B Kingma D P, Dhariwal P. Glow: Generative flow with invertible 1x1
convolutions[C]//Advances in Neural Information Processing Systems. 2018:
10236-10245.

m Generative Model:

z ~ p,(z) (Gaussian), x = gy(2),

go(z) is invertible, i.e., exists fy(x) such that gy(fy(x)) = x.
Consequently, z has the same dimensionality as x.

The model defines a distribution over inputs:

po(x) = ()| det( )

fy is implemented as a sequence of invertible functions, called flows,
each represented as an CNN. See references.
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Discussions

Recent Developments: Flow-Based Generative Models

m Objective function for learning: maximizing the Ioglikelihood

N (x()
X
log po(X) =) _ log py(x1) = E log p.(fy(x +§ |og|det )
i=1

m Intuitively, pick 6 so that the CNN map images from their original space,
where they are not Gaussian distributed, to a latent space where they are
Gaussian distributed.

Data space X' Latent space 2

Inference i
T~ px ‘ ? =

2= 7 ()

Generation
z~ p{ L:% &

e— () W

fr
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Discussions

Recent Developments: Flow-Based Generative Models

Nevin L. Zhang (HKUST) Machine Learning 36 / 38



Discussions

Recent Developments: Flow-Based Generative Models

m Image Interpolation: Take a pair of real images, encode them with the
encoder, and linearly interpolate between the latents to obtain samples.
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Discussions

Recent Developments: Flow-Based Generative Models

m Semantic Manipulation:

m 2z, average latent vectors with an attribute (e.g., smiling)
m z,;: average latent vectors without the attribute.
m Use the difference z,,s — z4eg as a direction of manipulation.

(c) Blond Hair
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