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Sets and Functions for Cryptography

@ Sets and functions are basic building blocks of
cryptographic systems. There is no way to learn
cryptography and computer security without the
knowledge of sets and functions.

@ Sets and functions are covered in school math.,
and also In any university course on discrete math.

@ Every student should read this material as you may
have forgotten sets and functions even if you
learnt them as people do forget.
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Sets

® A set is a collection of (distinct) objects.

e For example,
m

2

\/
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Members, Elements

® The objects that make up a set are called members
or elements of the set.

® An object can be anything that is “meaningful”. For
example,

m a humber
= an equation
= a person
= another set
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Equality of Sets

® Two sets are equal iff they have the same members.

s Thatis, a set is completely determined by its
members.

® This is known as the principle of extension.
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Pause and Think ...

® Does the statement “a set is a collection of objects”
define what a set is?

® Let
s the members of set A be -1 and 1,

s the members of set B be the roots of the equation
x2-1=0.

s Are sets A and B equal?
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The Notation { ... } Describes a Set

® A set can be described by listing the comma
separated members of the set within a pair of curly
braces.

® An example
m let S={1,3,9}
s Sis a set.
s« The membersof Sare 1, 3, 9.
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Order and Repetition Do Not Matter In
{...}

® By the principle of extension, a set is determined by
Its members.

e For example, the following expressions are
equivalent

«n {1,3,9}

{91, 3}

n{1,19933091}

s They denote the set whose members are 1, 3, 9.
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The Membership Symbol |

@ The fact that x iIs a member of S can be expressed as
m XT S

e The membership symbol 1 can be read as
m IS in, iIsa member of, belongs to

® An Example
m S={7,13, 21,47}

m 71 S, 131 S, 211 S, 471 S

e The negation of I is written | .
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Defining a Set by Membership Properties

e Notation
s S={xI T| PX)}
s The members of S are members of a already
known set T that satisfy property P.

® An example

s Let Z be the set of integers.
m Let Z, be the set of positive integers.
n Z,={x1 Z | x>0}
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Pause and Think ...

e Can you simplify the following expression?
u {{2’2}’ {{2} }’ {1’111}1 1 ; { 1 } ’ 2’ 2 }

e What does the following expression say?

] X:{X}

@ Find an expression equivalenttoS={...,x,...}.
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The Empty Set

® The empty set is also called the null set.
e It is the set that has no members.

e Itis denoted as A

® Clearly, £={}.

e For any object x, x | /E
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The Sets of Positive, Negative, and All

Integers

® Z = The set of (all) integers

nZ={...,-2,-1,0,1,2,...}

® Z. = The set of (all) positive integers
[ | Z+:{1, 2, 3, }
s Z,={x1 Z| x>0}

® Z = The set of (all) negative integers

aZ={...,-3,-2,-1}={-1,-2,-3, ...

n Z={x1 Z| x<0}
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The Set of Real Numbers

® R = The set of (all) real numbers
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The Set of Rational Numbers

® Q = The set of (all) rational numbers.

e Q={xI R|x=plg; pgl Z; gt 0}
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Pause and Think ...

® \What is the set of natural numbers?
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Subsets

® A s a subset of B, or B is a superset of A iff every
member of A is a member of B.

e Notationally,
s Al Biff" x ifx1 A thenx1 B.

® An example
« {-2,0,8}1 {-3,-2,-1,0,2,4,6,8,10}
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Negation of |

® A Is not a subset of B, or B is not a superset of A iff
there 1Is a member of A that iIs not a member of B.

e Notationally
s AEB iff $x, x1 A andx1 B.

e Example
s {2,4} E{2,3}
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Obvious Subsets

@ SIS
o £ S
e® Vacuously true

a The implication “if x T A&, thenx1 S”is true

e® By contradiction,
s If EE S, then$x, x1 A and x| S.
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Proper Subsets

® A s a proper subset of B, or B Is a proper superset
of A iff A Is a subset of B and A is not equal to B.

e Notationally
a Al BiffAl Band A! B

e Examples

s IfS1 /& then £1 S.
= Z, 1 Z1 QI R
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Power Sets

® The set of all subsets of a set is called the power set
of the set.

® The power set of S is P(S).

® Examples
» P(AE)={A}

» P({1,2}) ={A{1},{2},{1,2}}
a P(S)={/A& ..,S}
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Pay

| and |

@ Examples

are Different.

m 11 {1}istrue
a 11 {1}isfalse
s {1} {1}istrue
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Pause and Think ...

® Which of the following statements is true?
s S| P(S
= ST P(S

e WhatisP({1,2,3})”?
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Mutual Inclusion

® Sets A and B have the same members iff they
mutually include

s Al BandBIl A

@ Thatis, A=Biff Al BandB Il A.
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Equality by Mutual Inclusion

e Mutual inclusion is very useful for proving the equality
of two sets.

® To prove an equality, we prove two subset
relationships.
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An Example Showing the Equality of Sets

Recall that Z = The set of (all) integers.
LetA={x1 Z | x=2m forsomeml Z}
LetB={yl Z | y=2n-2 forsomen | Z}
To show A | B, note that
s 2M=2(M+1) -2 =2n-2
e Toshow B A, note that

s 2n-2 =2(n-1) = 2m
e Thatis, A=B.
e In fact, A, B both denote the set of even integers.
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Pause and Think ...

® Let
s A={x1] Z|*¥-1=0}
s B={x1 Z|2x-x2-2x+1=0}
s Show that A = B by the method of mutual
Inclusion.
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Universal Sets

@ Depending on the context of discussion,

s define a set U such that all sets of interest are
subsets of U.

s The set U is known as a universal set.
e For example,
s When dealing with integers, U may be Z

s When dealing with plane geometry, U may be the
set of all points in the plane
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Venn Diagrams

® To visualise relationships among some sets

@ Each subset (of U) is represented by a circle inside
the rectangle

(O
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Pause and Think ...

e If Z is auniversal set, can we replace Z by R as the
universal set?
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Set Operations

® Let A, B be subsets of some universal set U.

® The following set operations create new sets from A
and B.

e Union
s AEB={x1 U|xl Aorxl B}
® Intersection
s ACB={x1 U|xI Aandx1 B}
e Difference
s A-B=A\B={xI U|xT Aandxi B}
e Complement
s Ac=U-A={x1 U|xl A}
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Set Union

® An example
s {1,2,3}E{2,3,4,5}={1,2,3,4,5}

e the Venn diagram
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Set Intersection

® An example
m {1,2,3}C{2,3,45}={2,3}

e the Venn diagram
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Set Difference

® An example
m{1,2,3}-{2,3,4,5}={1}

e the Venn diagram
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Set Complement

e The Venn diagram
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Pause and Think ...

e LetAl B.
= What is A - B?
s Whatis B - A?

e IfA, BI C,whatcan you say about A E B and C?
e IfC | A, B, what can you say about C and A C B?

Discrete Math. Reading Materias



Lecture Topics

Sets and Members, Equality of Sets
Set Notation

The Empty Set and Sets of Numbers
Subsets and Power Sets

Equality of Sets by Mutual Inclusion

Universal Sets, Venn Diagrams

Set Operations

Set Identities

Proving Set ldentities

Discrete Math. Reading Materias



Basic Set Identities

e Commutative laws
s AEB=BEA
s ACB=BCA
® Associative laws
s AEB)EC=AE (BE Q)
« ACB)CC=AC(BCC)
e® Distributive laws
s AE(BCC)=(AEB)C (AE C)
s ACBEC)=(ACB)E(ACC)
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Basic Set ldentities (continued)

e /Eis the identity for union
s FEA=AE £=A
e U is the identity for intersection
s ACU=UCA=A
e Double complement law
m (AS)C=A
e ldempotent laws
s AEA=A
s ACA=A
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Basic Set ldentities (continued)

e De Morgan’s laws
s (AEB)=AcCBe
s (ACB)-=AcEBe

Discrete Math. Reading Materials
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Pause and Think ...

® Whatis
s (ACB) C (AEB)?

® Whatis
s (AEB) E (ACB)?
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Proof Methods

@ There are many ways to prove set identities.
e The methods include

s applying existing identities,

» building a membership table,

= using mutual inclusion.
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A Proof by Mutual Inclusion

e Provethat ACB)CC=AC (BC C).
e First showthat(ACB)C Cl AC (B C C).
e Letxl (ACB)CC,

s XI (ACB)andx1 C

» x| Aandx1 B andx1 C

= x| Aand x1 (BCC)

« XI AC(BCCQ)

e Thenshowthat AC(BCC)I (ACB)CC.

Discrete Math. Reading Materias
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Pause and Think ...

e To prove that A E Ac = U by mutual inclusion, do you
have to prove the inclusion AU Ac| U?

e To prove that A C A® = /EDby mutual inclusion, do you
have to prove the inclusion £1 A C Ac?
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“*High School” Functions

e® Functions are usually given by formulas.

e Examples
n f(X) = sin(x)
n f(X) = ex
m f(X) = x"
n f(X) = log X

e A function is a computation rule that changes one
value to another value.

e Effectively, a function associates, or relates, one

value to another value.
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“General” Functions

® Since a function relates one value to another, we can
think of a function as relating one object to another
object. Objects need not be numbers.

® In the previous examples, the function f relates the
object x to the object f(x).

e Usually we want to be able to relate each object of
Interest to only one object.

@ That is, a function is a single-valued and exhaustive
relation.
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Functions

@ A relation f from A to B is a function from A to B Iff

s forevery x 1 A, there exists a unique y I B such
that x fy, or equivalently, (x,y) T f.

® Functions are also known as transformations, maps,
and mappings.
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Example 1

o LetA={1,2,3}andB={ a,b}.
e R={(1,2), (2,a), (3,b) } is a function from A to B.
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Example 2

o LetA={1,2,3}andB={ a,b}.

e S={(1,a), (1,b), (2,a), (3,b) } is not a function from A
to B.
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Example 3

o LetA={1,2,3}andB={ a,b}.
e T={(1,a), (3,b)}Iis not a function from A to B.
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Pause and Think ...

e IsAx{a}, whereal A, afunctionfrom A to A?
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Function Notation

e Letfbe arelation from Ato B. Thatis, fl AxB.

e If the relation f is a function,
m wewritef: A® B.
n IF(xy) 1 f, we write y = f(x).

e Usually we use f, g, h, ... to denote relations that are
functions.
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Notational Convention

® Sometimes functions are given by stating the rule of
transformation, for example, f(x) = x+1.

® This should be taken to mean
s F={ (X)) AXB | x1 A}

s Where A and B are some understood sets.
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Pause and Think ...

e Letfi A xB be arelation and (x,y) I f.

® Does the expression f(x) = y make sense?
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Values, Images

e Letf: A® B.

o Lety =f(x).
x Thatis, xfy, equivalently, (x,y) 1 f.

® The objecty is called

= the image of x under the function f, or
= the value of f at x.

Discrete Math. Reading Materias

66



Inverse Images, Pre-images

® Letf: A® Bandyl B.

@ Define
s F3y)={x]T A ] fx)=y}

® The set f-1(y) is called the inverse image, or pre-
Image of y under f.
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Images and Pre-images of Subsets

o Letf:A® Band X1 AandY Il B.
e We define
s f{X)={f(x)T B|xT X}

s FUY)={xT A|f)T Y}
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Examples

e Let f: A® B be given as follows

1

2

3

o f({1,3})={c,d}
e i°({ad})={3}
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Some Properties

@ Letf:A® Band X1 AandY I B.
e Clearly we have
s f(A)I B

a f-1(B) = A because every element of A has an
Image in B
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Pause and Think ...

o Lletf:A® Band X1 AandY | B.

e If there are n elements in X, how many elements are
there in f(X)?

e If there are n elements in Y, how many elements are
there in f-1(Y)?
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Domains

e Letf: A® B.

® The domain of function f is the set A.

Discrete Math. Reading Materias

73



Codomains and Ranges

o Letf: A® B.
® The codomain of function f is the set B.
® The range of function f is the set of images of f.

a Clearly, the range of f is f(A).
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Example 1

® Thedomainis{1, 2, 3}.
® The codomainis{p,q,r, s}
® Therange is { p,Drsl.
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Example 2

@ Considerexp: R® R. Thatis, exp(x) = ex
e The domain and codomain of exp are both R.

® The range of exp is R,, the set of positive real
numbers.
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Pause and Think ...

® Considercos: R® R.

e What are the domain, codomain, and range of cos?
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Images and Pre-images of Subsets

e Letf: A® B.
o letX, XI AandY, Y|l B.

e We shall call f(X) the image of X instead of the set of
Images of members of X. Similarly, we shall simply
call f-1(Y) the preimage of Y.

® \We have
a f(F2(Y)DIT Yand X | f-1 (f(X))
s f(X E X)) =1f(X) E f(X), f{XC X) 1 f(X) C f(X)
s FL(YEY)=Ff1(Y)ET-L1(Y)
a f2(Y CY)=F1(Y)CT-1(Y)
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f(FL (Y)Y

® It is possible to have strict inclusion.

s When the range of f is a proper subset of its
codomain, we may take Y = B to obtain

a f(f1(B)=f(A)I B

® To show inclusion,
e lety T f(f1(Y)).
s $x1 f-1(Y)suchthatf(x)=y.
s We have f(x) 1.
s Thatis,y1 Y
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f(X E X) = f(X) E f(X)

® \We can easily show that
x f(X E X) E f(X) E f(X).

® This is because X E X' E X, so
x f(X E X)) E f(X).

e Similarly, we have f(X E X’) E f(X).

e Consequently, f(X E X’) E f(X) E f(X).
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f(X E X) = f(X) E f(X)

e Toshow f(XE X) 1 f(X) E f(X),
x letyl f(X E X).

e $xI XE X such that f(x) = y.

o Ifx1 X, thenyl f(X); otherwise, y1 f(X). This
means y 1 f(X) E f(X).

e Thatis, f{(XE X) I f(X) E f(X).
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Pause and Think ...

e What do the given set expressions become when f is
the identity function?
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Equality of Functions

@ Letf:A® Bandg:C® D.

e We define function f = function g iff
m Setf=setg

® Note that this forces A = C but allows Bt D.

s Some require B = D as well.
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A Proof that Set f = Set g Implies Domain
f = Domain g

@ Letf:A® Bandg:C® D andsetf=setqg.
o Letxl A.
s (XFfX)T f
s Butf=gas sets
= ()T g
s Thatisx1 C.
s Consequently, Al C.
e Similarly, we have C1 A.
e Thatis, A=C.

Discrete Math. Reading Materias
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A Proof that Set f = Set g Implies f(x) =
g(x) forall x T A

e Letf,g: A® Bandsetf=setg.
o Letxl A.
s (XFfX)T f
s Butf=gas sets
s (XfO)DT g
s Thatis (x,f(x)), (x,g(x)) | g.
s Since g is a function, so f(x) = g(x).
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Example

® \We consider
m exp:R® Rand
m exp:[0,1]® R
= as two different functions though the computation
rule is the same --- exp(x) = ex.
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Pause and Think ...

e Letfand g be functions such that f(x) = g(x) on some
set A. Can we conclude that function f = function g?
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ldentity Functions

e Consider the identity relation I, on the set A.

e Clearly, for every x I A, |, relates x to an unique
element of A that is itself.

e Consequently, we have |,: A® A.

® |, is also called the identity function on A.
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Constant Functions

e Letf: A® B.

o Iff(A)={y}forsomeyl B,fis called a constant
function of value vy.
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Characteristics Functions

® Consider some universal set U.
o LetAl U.
e The functionc,: U® {0, 1} defined by

n C,(X)=1,ifxT A,
m C,(X)=0,ifxT A

s IS called the characteristic function of A.
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Pause and Think ...

e Letf:R® R.

a If fis a constant function, what does its graph on
the Cartesian X-Y plane look like?

n If fis the identity function, what does its graph on
the Cartesian X-Y plane look like?
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Unary Operations

® A unary operation on a set A acts on an element of A
and produces another element of A.

e Clearly, a unary operation uop can be thought of as a
function f: A® A with f(x) = uop( x ).

e Conversely, a function from A to A can be regarded
as a unary operation on A.
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Example 1

® Let U be some universal set.

® The complement operation on P(U) can be
represented as a function

= f: P(U)® P(U) with f(A) = Ac.
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Binary Operations

® A binary operation on a set A acts on two elements of
A and produces another element of A.

e Clearly, a binary operation bop can be represented
as a function

s f: AXA ® A with f((a,b)) = a bop b.
s We write f(a,b) instead of f((a,b)).

e Conversely, a function from AxA to A can be
regarded as a binary operation on A.
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Example 1

® Let U be some universal set.

® The union operation on P(U) can be represented as a
function f: P(U)xP(U)® P(U) with f(A,B) = AEB.
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Pause and Think ...

e LetU={0,11}

® Give the set representations of the functions for
unary complement operation and the binary
Intersection operation.
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Some Special Functions

Unary and Binary Operations as Functions

The Composition of Two Functions is a Function

The Values of Function Composition
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Function Composition

e Letf:A® Bandg:B® C.

® Since relations can be composed and functions are
relations, so functions can be composed like relation
composition.

® So relations f and g can be composed and their
composition is gf.

@ Clearly gf is a relation from A to C.

e But is gf a function?
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Function Composition Gives a Function

e Letf:A® Bandg:B® C.

e We want to show thatgf: A® C.

s Thatis, the composition of two functions is again a
function.

e We have to show for any x I A, there is a unique z |
C, such that (x,z) I df.
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Existency Proof

o Letx1 A.

® Since fis a function from A to B, there is a unique
y1 B such that (x,y) 1 f.

e Forthisyl B, thereis aunique z1 C such that
(y,z) T g because g is a function from B to C.

e Thatis, (x,2)1 df.
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Uniqueness Proof

e Let(x,2), (x,2) 1 df.

® There existy, y I B such that
= Y1 £ (y2)T g
= ) Ry 2)1 g

e Butfis afunction,soy =Y.
e Now we have (y,2), (y,z2)1 g.
e But g is a function,soz =7.
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Pause and Think ...

e Can you compose cos and log to obtain the
composition (log cos)?

@ Can you compose log and exp to obtain the
composition (exp log)?
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The Values of Function Composition

e Letf:A® Bandg:B® C.

® Sincegf: A® C,foranyxl A, thereisazl C,
such that (gf)(x) = z.

e Thatis, (x,z2)1 df.

e® By the definition of function composition, there is a
y1 B, suchthat (x,y)1 fand (y,2)1 g.

e® Since f and g are function, we can write f(x) =y and
a(y) = z.

e® Substituting y = f(x) in g(y) = z, we have g(f(x))=z.

e Thatis,

= (91)(X) = g(f(x)).
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The Values of Function Compositions

e Letf:A® B,g:B® C,h:C® D.

® Since relation composition are associative and
functions are relations, we have

» h(gf) = (hg)f
e Furthermore, we have
= (h(gf)(x) =h((gh(x))=h(g (f(x)))
s and
n ((hg)N)(x) = (hg)(f(x)) =h(g (f(x)))

® Thatis,

= (h(gn)(x) = ((hg))(x) = h(g(f(x)))
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Pause and Think ...

@ Let f(x) = x+1, g(X) = X%, and h(x) = 1/(1+x?) be
functions R from to R.

= Is hgf a function?

a If so, what is the value of (hgf)(x)?
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One-To-One Functions, Injections

e Letf: A® B.
@ The function f is one-to-one Iff
a forany x, x 1 A,
m If f(X) = f(X) then x =X
s Equivalently,
m If X1 X then f(x) ! f(X).
® In words, a function is one-to-one iff it maps distinct
elements to distinct images.
® A one-to-one function is also called an injection.

® \We abbreviate one-to-one as 1-1.
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Example 1

o LetA={1,2, 3}

e LetB={a,b,c,d e}

e Letf={(1,a), (2,b), (3,a) }

e The function fis not 1-1 because
s f(1)=1f(3)=abutl?! 3

e
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Example 2

o LetA={1,2, 3}

e LetB={a,b,c,d e}

e Letf={(1,e), (2,b), (3,0)}

@ The function fis 1-1 because
m Ifx1y, thenf(x)?! f(y)
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Example 3

@ Letf:Z® Z with f(x) = X2
@ The function fis not 1-1 because f(x) = f(-x).

@ Letg:Z, ® Z with g(x) = x°.
@ The function g is 1-1 because x? = y2 implies x = y.
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Pause and Think ...

e How many 1-1 functions are there from {1,2,3} to
itself?
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Composition of One-To-One Functions

® Theorem
m Letf:A® B,g:B® C.
a If both fand g are 1-1, then g fis also 1-1.

e® That s, the composition of 1-1 functions is again 1-1.
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Proof

e Let (gn)(x) = (an(y)

e g(f(x)) = g(f(y))

e Since g is 1-1, f(x) = f(y)

e Sincefis 1-1,x=y

e Thatis, gf is a 1-1 function.
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The Converse I1s Almost True

e Letf:A® B,g:B® C. Letgf: A® C be 1-1.

@ Then fis 1-1 but g need not be 1-1.
® Proof

n Let f(X) = f(y)

= Then g(f(x)) = 9(f(y))

= (9F)(X) = (9f)(y)

m X=Y

m Thatis, fis 1-1.
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The Converse Is False

e Letf:A® B,g:B® C. Letgf: A® C be 1-1.
e The following is an example that g is not 1-1.

f g
G’-\
A B C
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Pause and Think ...

e Letf:A® B,g:B® C. Letgf: A® C be not 1-1.

s Are f and g both not 1-1?
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Onto Functions, Surjections

o Letf: A® B.
® The function f is onto Iff
a foranyyl B,

= there exists some x| A,
m such that f(x) = .

® In words, a function is onto iff every element in the
codomain has a non-empty pre-image.

® A onto function is also called a surjection.

Discrete Math. Reading Materias 124



Onto Means Range is Codomain

e Letf: A® B be onto.
e Onto implies B f(A).
e Proof
as Letyl B.
s There exists x I A such that f(x) = y.
s yiI f(A)
a Thatis, B1 f(A).
e Butf(A)l B.
e Thatis, B = f(A).
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Example 1

o LletA={1,2,3}and B={a,b,c,d, e}

e Letf={(1,a), (2,a), (3,a) }

@ The function fAis not onto because thereisab | B
without any x | A such that f(x) = b.
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Example 2

o LletA={1,2,3}andB={a, b}

e Letf={(1,b), (2,b), (3,a)}

° TheAfunction f is onto because for any y I B there is
ax | A such that f(x) =Y.

|
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Example 3

@ Letf:Z® Z with f(x) = X2

s I he function f Is not onto because there Is no
Integer x such that f(x) = -1.

@ Letg:Z® Z, with g(x) = |x| + 1.
= It is not hard to check that g is onto.
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Pause and Think ...

@ Letg:Z® Z, with g(x) = |x|+2. Is g onto?
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Composition of Onto Functions

® Theorem
m Letf:A® B,g:B® C.
= If both f and g are onto, then g f is also onto.

e That is, the composition of onto functions is again
onto.
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Proof

® Letzl C.
e Sinceg:B® Cisonto,thereisay | B such that
= g(y) =z

@ Sincef: A® Bisonto, thereisax 1 A such that
n f(X)=y.

e Combining, we have
= (9H)(x) = g(f(x)) =aly) =z

e® Thatis, the composition df is onto.
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The Converse I1s Almost True

o Letf:A® B,g:B® C. Letgf: A® C be onto.
@ Then g is onto but f need not be onto.
e Proof

s Since gfis onto, foranyz1 C, thereisaxl A
such that (gf)(x) = z.

s Thatis g(f(x)) = z.

x Butf(x)1 B.
a Soforanyz 1 C,thereisay=1f(x)T B such that
a(y) = x.

s Thatis, g is onto.
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The Converse Is False

o Letf:A® B,g:B® C. Letgf: A® C be onto.

e The following is an example that f is not onto.

f g
G’.\
A B C

Discrete Math. Reading Materias
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Pause and Think ...

@ Letf:A® B,g:B® C. Letgf: A® C be not onto.

s Are f and g also not onto?
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1-1 and Onto Functions, Bijections, 1-1
Correspondences

e Letf: A® B.

e The function fis a 1-1 correspondence iff f is 1-1 and
onto.

® A 1-1 correspondence is also called a bijection.
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Example 1

e LetA={1,2,3}and B={a, b, c}

e Letf={(1,b), (2,a), (3,c) }.

® The function fis a 1-1 correspondence because it is
1-1 and onto.

1 a
2 b
3 » C

Discrete Math. Reading Materias

138



Example 2

@ Letf:Z® Zandf(x)=x-1.

® Since x-1 =y-1 impliesx =y, so fis 1-1.

e Since f(y+1) =y, so f is onto.

e The function fis a 1-1 correspondence.
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Example 3

@ Letf:Z® Z, and f(x) = |x| + 1.
® Since f(-x) = f(x) but -x* x for non-zero x, fis not 1-1.

® Wheny > 0, we have f(y-1) =y. This shows that fis
onto.

® Since fis onto but not 1-1, sofis nota 1-1
correspondence.
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Pause and Think ...

® How many 1-1 correspondences are there from
{1,2,3} to itself?
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Composition of 1-1 Correspondences

® Theorem
m Letf:A® B,g:B® C.

s If both f and g are 1-1 correspondences, then g fis
also a 1-1 correspondence.

e That s, the composition of 1-1 correspondences is a
1-1 correspondence.
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Proof

e® Since fand g are 1-1, so is df.
e Since f and g are onto, so is df.

® Since gfis 1-1 and onto, gf is a 1-1 correspondence.
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The Converse I1s Almost True

® Since gf is 1-1,
= we have shown that f is 1-1,
= but g need not be 1-1.

® Since df is onto,
= we have shown that g is onto,
= but f need not be onto.

e Thatis, f and g need not be 1-1 correspondences.
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The Converse Is False

e The following example shows that gf is a 1-1
correspondence from A to C, but neitherfnorgis a
1-1 correspondence.

f g
®>-\
A B C
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Making an Injection a Bijection
@ Letf: A® B be 1-1.
e Let C =1(B).

@ Clearly, f: A® C is a bijection.
s Proof:
s fremains 1-1
a f has become onto.
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Pause and Think ...

e Letf:A® B,g:B® C. Ifgf:A® Cisnota
bijection, are f and g also not bijections?
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Inverse Functions

o LetA={0,1}B={p,q} 1={(0,p), (1,p) }.

e® Clearly fis a function from A to B.

® Clearly f-1={(p,0), (p,1) }is a relation from B to A
but it Is not a function from B to A.

@ A function is invertible iff its inverse is also a function.
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Theorem

e Letf: A® B.

e Iffis a 1-1 correspondence then f-tis a function.
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Proof

® Letf: A® B be 1-1 and onto.
e We wantto show f-1l B x A is a function.

e We need to show
a Foranyy|l B,thereisaxi A such that

(yx) 1T f-1.

n I (y,%), (y,xX)T -1 then x = X.
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Proof --- Every Member of B Has an
Image Under f -1

e Letyl B.

e Since fis onto, thereisa x I A such that f(x) = y.

e Thatis, foranyyl B, thereisax| A, such that
s (XY 1 T

e But (x,y) 1 fimplies (y,x)T f-1.
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Proof --- The Image Under f -1is Unique

e Letyl B.

e Let (y,x), (yx)I f-1.
= We have (x,y), (X,y) 1 f.
s This gives f(x) =y = f(X).
m Butfis 1-1 gives x = X.
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Pause and Think ...

@ ConsiderAxB={1,2,3}x{a,b,c}.

o Letf={(1,a), (2,b), (3,a)}.
@ Is f a function from A to B?

@ Is f-1a function from B to A?
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Inverse Functions

e Letf: A® B.
® Since fis a function, it is a relation.
e We know f1is a relation from B to A.

e If f-1is a function, what can we say about f ?
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Theorem

e Letf: A® B.

e If f-1is a function, then fis 1-1 and onto.

Discrete Math. Reading Materias

158



Proof

e Givenf-1:B® Ais a function.
e We wanttoshowf: A® Bis 1-1 and onto.
e \We need to show

n If f(X) = (X)), then x = X.

s Foranyyl B,thereisaxi A such thatf(x)=y.
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Proof ---fis 1-1

o Letf(x)=1(X)=y.
e We have (x,y), (X,y) 1 f.

o (vX), (yx)I f
s But f-lis a function, so the image of y under it is
unique, that is, x = X.

® Since x=xX whenever f(x) = f(x'), fis 1-1.
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Proof --- fIs Onto

e Foranyyl B, letf-1(y)=x.
s Thatis, (y,x)1 f-1.

x (x,y) 1 fand thus f(x) = y.

® Since any member of B has a non-empty pre-image
under f, f Is onto.
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Pause and Think ...

@ ConsiderAxB={1,2,3}x{a,b,c}.

o Letf={(1,a), (2,b), (3,c) }.
@ Is f a function from A to B?

@ Is f-1a function from B to A?
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The Inverse Image and the Pre-Image

e Letf:A® Bandf1:B® A.
e We have (x,y) 1 fiff (y,x)1 f-1.

® Since both f and f -1 are functions, the above can be
written as

n f(X) =y iff f-1(y) =x.
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Theorem

@ If the Inverse of a function is a function, the inverse
function is a 1-1 correspondence.

® Proof
s Let the function be f and f -1 be a function.
= We have (f-1) -1=fis a function.

= Since the inverse of f -1 is a function, by a previous
theorem, f -1 is a 1-1 correspondence.
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Pause and Think ...

e Letf: A® B.
o Letf(x)=y.

e Can we write f-1(y) = x?
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Function Composition

® Letf: A® B be 1-1 and onto.
e Wehavef1:B® Ais also 1-1 and onto.

e \We want to find
m 1
m f1f
m fl,, I5T

u |Af'1, f-1 IB
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ff-l

® Wehavef1:B® A, f: A® B.
o Let (ff-1)(X)=y.
o f(T2(X) =y
o f3(X) =1 (y)
s Butf-lisal-1correspondence,
m SOX=Y
s and f f-1(x) = x.
e Thatis, ff-1=I;.
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f1f

e Wehavef:A® B,f1:B® A.
@ Let (f1f)(x)=Yy.
n FHT(X) =y
n F(X)=1(y)
s Butfisa 1-1 correspondence,
m SOX=Y
s and f-1f(x) = x.
e Thatis, f-1f=1,
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fl,
e Wehavel, A® A f: A® B.

o Let (f1)(X) =Y.
. f(la (X)) =y
n F(X) =y
o (F () = f(x)

e Thatis, fl,=f.
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|, f
e Wehavef: A® B, I;:B® B.

o Let (Izf)(X) =Y.
s g (T(X) =Yy
n T(X) =Yy
n (Ig H(X) =1(x)

e Thatis, Igf=f.
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Pause and Think ...

e Whatare |, f-tand f-115?
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