Sets and Functions

Reading for COMP364 and CSI T571

Cunsheng Ding Department of Computer Science HKUST, Kowloon, CHINA

Acknowledgments: Materials from Prof. Sanjain Jain at NUS

Sets and Functions for Cryptography

- Sets and functions are basic building blocks of cryptographic systems. There is no way to learn cryptography and computer security without the knowledge of sets and functions.
- Sets and functions are covered in school math., and also in any university course on discrete math.
- Every student should read this material as you may have forgotten sets and functions even if you learnt them as people do forget.

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

Sets

- A set is a collection of (distinct) objects.
- For example,

Members, Elements

- The objects that make up a set are called <u>members</u> or <u>elements</u> of the set.
- An object can be anything that is "meaningful". For example,
 - a number
 - an equation
 - a person
 - another set

Equality of Sets

- Two sets are equal iff they have the same members.
 - That is, a set is completely determined by its members.
- This is known as the principle of extension.

Pause and Think ...

 Does the statement "a set is a collection of objects" define what a set is?

• Let

- the members of set A be -1 and 1,
- the members of set B be the roots of the equation
 x² 1 = 0.
- Are sets A and B equal?

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

The Notation { ... } Describes a Set

 A set can be described by listing the comma separated members of the set within a pair of curly braces.

- An example
 - Let S = { 1, 3, 9 }.
 - S is a set.
 - The members of S are 1, 3, 9.

Order and Repetition Do Not Matter in { ... }

- By the principle of extension, a set is determined by its members.
- For example, the following expressions are equivalent
 - { 1, 3, 9 }
 - { 9, 1, 3 }
 - **•** { 1, 1, 9, 9, 3, 3, 9, 1 }
 - They denote the set whose members are 1, 3, 9.

The Membership Symbol ∈

- The fact that x is a member of S can be expressed as
 x ∈ S
- The membership symbol \in can be read as
 - is in, is a member of, belongs to
- An Example
 - S = { 7, 13, 21, 47 }
 - $\bullet \ 7 \in S, \ 13 \in S, \ 21 \in S, \ 47 \in S$
- The negation of \in is written \notin .

Defining a Set by Membership Properties

- Notation
 - $\bullet \quad S = \{ x \in T \mid P(x) \}$
 - The members of S are members of a already known set T that satisfy property P.
- An example
 - Let Z be the set of integers.
 - Let Z₁ be the set of positive integers.
 - **Z**₊ = { $x \in Z | x > 0$ }

Pause and Think ...

Can you simplify the following expression?
{ {2,2}, { {2} }, {1,1,1}, 1, { 1 }, 2, 2 }

• What does the following expression say?

■ X = { X }

• Find an expression equivalent to $S = \{ \ldots, x, \ldots \}$.

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

The Empty Set

- The empty set is also called the null set.
- It is the set that has no members.
- It is denoted as \emptyset .
- Clearly, $\emptyset = \{ \}$.
- For any object x, $x \notin \emptyset$.

The Sets of Positive, Negative, and All Integers

- Z = The set of (all) integers
 - **Z** = { . . . , -2, -1, 0, 1, 2, . . . }
- **Z**₊ = The set of (all) positive integers

Z₊ = {
$$x \in Z | x > 0$$
 }

• Z_ = The set of (all) negative integers

Z = {
$$x \in Z | x < 0$$
 }

The Set of Real Numbers

• **R** = The set of (all) real numbers

The Set of Rational Numbers

• **Q** = The set of (all) rational numbers.

•
$$\mathbf{Q} = \{ x \in \mathbf{R} \mid x = p/q; p,q \in \mathbf{Z}; q \neq 0 \}$$

Pause and Think ...

• What is the set of natural numbers?

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

Subsets

- A is a subset of B, or B is a superset of A iff every member of A is a member of B.
- Notationally,
 - $A \subseteq B$ iff $\forall x$, if $x \in A$, then $x \in B$.
- An example
 - { -2, 0, 8 } ⊆ { -3, -2, -1, 0, 2, 4, 6, 8, 10 }

Negation of \subseteq

- A is not a subset of B, or B is not a superset of A iff there is a member of A that is not a member of B.
- Notationally
 - $A \not\subseteq B$ iff $\exists x, x \in A$ and $x \notin B$.
- Example
 - { 2, 4 } <u>⊄</u> { 2, 3 }

Obvious Subsets

- $\bullet \ S \subseteq S$
- $\varnothing \subseteq S$
- Vacuously true
 - \blacksquare The implication "if $x \in {\varnothing}$, then $x \in S$ " is true
- By contradiction,
 - If $\varnothing \not\subseteq S$, then $\exists x, x \in \emptyset$ and $x \notin S$.

Proper Subsets

• A is a proper subset of B, or B is a proper superset of A iff A is a subset of B and A is not equal to B.

• Notationally

- $A \subset B$ iff $A \subseteq B$ and $A \neq B$
- Examples
 - If $S \neq \emptyset$, then $\emptyset \subset S$.
 - $\blacksquare \ \mathsf{Z}_{\scriptscriptstyle +} \subset \ \mathsf{Z} \ \subset \ \mathsf{Q} \subset \ \mathsf{R}$

Power Sets

- The set of all subsets of a set is called the power set of the set.
- The power set of S is P(S).
- Examples
 - $\mathsf{P}(\emptyset) = \{\emptyset\}$
 - $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
 - P(S) = { Ø, ..., S }

\in and \subseteq are Different.

- Examples
 - 1 ∈ { 1 } is true
 - $1 \subseteq \{1\}$ is false
 - { 1 } ⊆ { 1 } is true

Pause and Think ...

- Which of the following statements is true?
 - S \subseteq P(S)
 - $\bullet S \in P(S)$
- What is P({ 1, 2, 3 })?

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

Mutual Inclusion

- Sets A and B have the same members iff they mutually include
 - $A \subseteq B$ and $B \subseteq A$
- That is, A = B iff $A \subseteq B$ and $B \subseteq A$.

Equality by Mutual Inclusion

- Mutual inclusion is very useful for proving the equality of two sets.
- To prove an equality, we prove two subset relationships.

An Example Showing the Equality of Sets

- Recall that \mathbf{Z} = The set of (all) integers.
- Let $A = \{ x \in \mathbf{Z} \mid x = 2 m \text{ for some } m \in \mathbf{Z} \}$
- Let $B = \{ y \in Z \mid y = 2 n 2 \text{ for some } n \in Z \}$
- To show $A \subseteq B$, note that
 - 2m = 2(m+1) 2 = 2n-2
- To show $B \subseteq A$, note that
 - 2n-2 = 2(n-1) = 2m
- That is, A = B.
- In fact, A, B both denote the set of even integers.

Pause and Think ...

- Let
 - $A = \{ x \in Z \mid x^2 1 = 0 \}$
 - $B = \{ x \in Z \mid 2 x^3 x^2 2 x + 1 = 0 \}$
 - Show that A = B by the method of mutual inclusion.

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

Universal Sets

- Depending on the context of discussion,
 - define a set U such that all sets of interest are subsets of U.
 - The set U is known as a universal set.
- For example,
 - when dealing with integers, U may be Z
 - when dealing with plane geometry, U may be the set of all points in the plane

Venn Diagrams

- To visualise relationships among some sets
- Each subset (of U) is represented by a circle inside the rectangle

Discrete Math. Reading Materials

Pause and Think ...

• If Z is a universal set, can we replace Z by R as the universal set?
Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- <u>Set Operations</u>
- Set Identities
- Proving Set Identities

Set Operations

- Let A, B be subsets of some universal set U.
- The following set operations create new sets from A and B.
- Union
 - $A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$
- Intersection
 - $A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$
- Difference
 - $A B = A \setminus B = \{ x \in U \mid x \in A \text{ and } x \notin B \}$
- Complement

•
$$A^c = U - A = \{ x \in U \mid x \notin A \}$$

Discrete Math. Reading Materials

Set Union

• An example

• { 1, 2, 3 } \cup { 2, 3, 4, 5 } = { 1, 2, 3, 4, 5 }

• the Venn diagram

Discrete Math. Reading Materials

Set Intersection

- An example
 - { 1, 2, 3 } \cap { 2, 3, 4, 5 } = { 2, 3 }
- the Venn diagram

Set Difference

- An example
 - { 1, 2, 3 } { 2, 3, 4, 5 } = { 1 }
- the Venn diagram

Set Complement

• The Venn diagram

Pause and Think ...

- Let $A \subseteq B$.
 - What is A B?
 - What is B A?
- If A, B \subseteq C, what can you say about A \cup B and C?
- If C \subseteq A, B, what can you say about C and A \cap B?

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

Basic Set Identities

- Commutative laws
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associative laws
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$
- Distributive laws
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Basic Set Identities (continued)

 $\bullet \ \ensuremath{\varnothing}$ is the identity for union

 $\blacksquare \ \emptyset \cup \mathsf{A} = \mathsf{A} \cup \emptyset = \mathsf{A}$

• U is the identity for intersection

•
$$A \cap U = U \cap A = A$$

- Double complement law
 - $(A^c)^c = A$
- Idempotent laws
 - $A \cup A = A$
 - $A \cap A = A$

Basic Set Identities (continued)

- De Morgan's laws
 - $(A \cup B)^c = A^c \cap B^c$
 - $(A \cap B)^c = A^c \cup B^c$

Pause and Think ...

- What is
 - (A∩B) ∩ (A∪B)?
- What is
 - (A∪B) ∪ (A∩B)?

Lecture Topics

- Sets and Members, Equality of Sets
- Set Notation
- The Empty Set and Sets of Numbers
- Subsets and Power Sets
- Equality of Sets by Mutual Inclusion
- Universal Sets, Venn Diagrams
- Set Operations
- Set Identities
- Proving Set Identities

Proof Methods

- There are many ways to prove set identities.
- The methods include
 - applying existing identities,
 - building a membership table,
 - using mutual inclusion.

A Proof by Mutual Inclusion

- Prove that $(A \cap B) \cap C = A \cap (B \cap C)$.
- First show that $(A \cap B) \cap C \subseteq A \cap (B \cap C)$.
- Let $x \in (A \cap B) \cap C$,
 - $x \in (A \cap B)$ and $x \in C$
 - $x \in A$ and $x \in B$ and $x \in C$
 - $x \in A$ and $x \in (B \cap C)$
 - $x \in A \cap (B \cap C)$
- Then show that $A \cap (B \cap C) \subseteq (A \cap B) \cap C$.

Pause and Think ...

- To prove that A ∪ A^c = U by mutual inclusion, do you have to prove the inclusion A U A^c ⊆ U?
- To prove that A ∩ A^c = Ø by mutual inclusion, do you have to prove the inclusion Ø ⊆ A ∩ A^c?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

"High School" Functions

- Functions are usually given by formulas.
- Examples
 - f(x) = sin(x)
 - $f(x) = e^x$
 - $f(x) = x^n$
 - $f(x) = \log x$
- A function is a computation rule that changes one value to another value.
- Effectively, a function associates, or relates, one value to another value.

"General" Functions

- Since a function relates one value to another, we can think of a function as relating one object to another object. Objects need not be numbers.
- In the previous examples, the function f relates the object x to the object f(x).
- Usually we want to be able to relate each object of interest to only one object.
- That is, a function is a single-valued and exhaustive relation.

Functions

- A relation f from A to B is a function from A to B iff
 - for every x ∈ A, there exists a unique y ∈ B such that x f y, or equivalently, (x,y) ∈ f.
- Functions are also known as transformations, maps, and mappings.

Example 1

- Let $A = \{ 1, 2, 3 \}$ and $B = \{ a, b \}$.
- R = { (1,a), (2,a), (3,b) } is a function from A to B.

Discrete Math. Reading Materials

Example 2

- Let $A = \{ 1, 2, 3 \}$ and $B = \{ a, b \}$.
- S = { (1,a), (1,b), (2,a), (3,b) } is not a function from A to B.

Discrete Math. Reading Materials

Example 3

- Let $A = \{ 1, 2, 3 \}$ and $B = \{ a, b \}$.
- T = { (1,a), (3,b) } is not a function from A to B.

Discrete Math. Reading Materials

Pause and Think ...

• Is A x { a }, where $a \in A$, a function from A to A?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

Function Notation

- Let f be a relation from A to B. That is, $f \subseteq AxB$.
- If the relation f is a function,
 - we write $f : A \rightarrow B$.
 - If $(x,y) \in f$, we write y = f(x).
- Usually we use f, g, h, ... to denote relations that are functions.

Notational Convention

- Sometimes functions are given by stating the rule of transformation, for example, f(x) = x+1.
- This should be taken to mean

•
$$f = \{ (x, f(x)) \in AxB \mid x \in A \}$$

where A and B are some understood sets.

Pause and Think ...

- Let $f \subseteq A \times B$ be a relation and $(x,y) \in f$.
- Does the expression f(x) = y make sense?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

Values, Images

- Let $f : A \rightarrow B$.
- Let y = f(x).
 That is, x f y, equivalently, (x,y) ∈ f.
- The object y is called
 - the image of x under the function f, or
 - the value of f at x.

Inverse Images, Pre-images

- Let $f : A \rightarrow B$ and $y \in B$.
- Define

•
$$f^{-1}(y) = \{ x \in A \mid f(x) = y \}$$

 The set f⁻¹(y) is called the inverse image, or preimage of y under f.

Images and Pre-images of Subsets

- Let $f : A \rightarrow B$ and $X \subseteq A$ and $Y \subseteq B$.
- We define
 - $f(X) = \{ f(x) \in B \mid x \in X \}$
 - $f^{-1}(Y) = \{ x \in A \mid f(x) \in Y \}$

Examples

• Let $f : A \to B$ be given as follows

• f({1,3}) = { c, d }

• f⁻¹({ a, d }) = { 3 }

Discrete Math. Reading Materials

Some Properties

- Let $f : A \rightarrow B$ and $X \subseteq A$ and $Y \subseteq B$.
- Clearly we have
 - $f(A) \subseteq B$
 - f⁻¹(B) = A because every element of A has an image in B

Pause and Think ...

- Let $f : A \rightarrow B$ and $X \subseteq A$ and $Y \subseteq B$.
- If there are n elements in X, how many elements are there in f(X)?
- If there are n elements in Y, how many elements are there in f⁻¹ (Y)?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition
Domains

- Let $f : A \rightarrow B$.
- The domain of function f is the set A.

Codomains and Ranges

- Let $f : A \rightarrow B$.
- The codomain of function f is the set B.
- The range of function f is the set of images of f.
 - Clearly, the range of f is f(A).

Example 1

- The domain is { 1, 2, 3 }.
- The codomain is { p, q, r, s }.
- The range is { p, r }. Discrete Math. Reading Materials

Example 2

- Consider exp : $\mathbf{R} \to \mathbf{R}$. That is, $\exp(\mathbf{x}) = e^{\mathbf{x}}$.
- The domain and codomain of exp are both R.
- The range of exp is R₊, the set of positive real numbers.

Pause and Think ...

- Consider $\cos : \mathbf{R} \to \mathbf{R}$.
- What are the domain, codomain, and range of cos?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

Images and Pre-images of Subsets

- Let $f : A \rightarrow B$.
- Let X, X' \subseteq A and Y, Y' \subseteq B.
- We shall call f(X) the image of X instead of the set of images of members of X. Similarly, we shall simply call f⁻¹(Y) the preimage of Y.
- We have
 - $f(f^{-1}(Y)) \subseteq Y$ and $X \subseteq f^{-1}(f(X))$
 - $f(X \cup X') = f(X) \cup f(X'), f(X \cap X') \subseteq f(X) \cap f(X')$
 - $f^{-1}(Y \cup Y') = f^{-1}(Y) \cup f^{-1}(Y')$
 - $f^{-1}(Y \cap Y') = f^{-1}(Y) \cap f^{-1}(Y')$

$f(f^{-1}(Y)) \subseteq Y$

- It is possible to have strict inclusion.
 - When the range of f is a proper subset of its codomain, we may take Y = B to obtain
 - $f(f^{-1}(B)) = f(A) \subset B$
- To show inclusion,
 - let $y \in f(f^{-1}(Y))$.
 - $\exists x \in f^{-1}(Y)$ such that f(x) = y.
 - We have $f(x) \in Y$.
 - That is, $y \in Y$

$f(X \cup X') = f(X) \cup f(X')$

- We can easily show that
 - $f(X \cup X') \supseteq f(X) \cup f(X')$.
- This is because $X \cup X' \supseteq X$, so
 - $f(X \cup X') \supseteq f(X)$.
- Similarly, we have $f(X \cup X') \supseteq f(X')$.
- Consequently, $f(X \cup X') \supseteq f(X) \cup f(X')$.

$f(X \cup X') = f(X) \cup f(X')$

- To show $f(X \cup X') \subseteq f(X) \cup f(X')$, • let $y \in f(X \cup X')$.
- $\exists x \in X \cup X'$ such that f(x) = y.
- If $x \in X$, then $y \in f(X)$; otherwise, $y \in f(X')$. This means $y \in f(X) \cup f(X')$.
- That is, $f(X \cup X') \subseteq f(X) \cup f(X')$.

Pause and Think ...

• What do the given set expressions become when f is the identity function?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

Equality of Functions

- Let $f : A \rightarrow B$ and $g : C \rightarrow D$.
- We define function f = function g iff
 - set f = set g
- Note that this forces A = C but allows $B \neq D$.
 - Some require B = D as well.

A Proof that Set f = Set g Implies Domain f = Domain g

- Let $f : A \to B$ and $g : C \to D$ and set f = set g.
- Let $x \in A$.
 - $(x,f(x)) \in f$
 - But f = g as sets
 - $(x,f(x)) \in g$
 - That is $x \in C$.
 - Consequently, $A \subseteq C$.
- Similarly, we have $C \subseteq A$.
- That is, A = C.

A Proof that Set f = Set g Implies f(x) = g(x) for all $x \in A$

- Let f, g : A \rightarrow B and set f = set g.
- Let $x \in A$.
 - $(x,f(x)) \in f$
 - But f = g as sets
 - $(x,f(x)) \in g$
 - That is $(x,f(x)), (x,g(x)) \in g$.
 - Since g is a function, so f(x) = g(x).

Example

- We consider
 - \blacksquare exp : $\textbf{R} \rightarrow \textbf{R}$ and
 - $exp:[0,1] \rightarrow \mathbf{R}$
 - as two different functions though the computation rule is the same --- exp(x) = e^x.

Pause and Think ...

 Let f and g be functions such that f(x) = g(x) on some set A. Can we conclude that function f = function g?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

Identity Functions

- Consider the identity relation I_A on the set A.
- Clearly, for every $x \in A$, I_A relates x to an unique element of A that is itself.
- Consequently, we have $I_A : A \rightarrow A$.
- I_A is also called the identity function on A.

Constant Functions

- Let $f : A \rightarrow B$.
- If f(A) = { y } for some y ∈ B, f is called a constant function of value y.

Characteristics Functions

- Consider some universal set U.
- Let $A \subseteq U$.
- The function $\chi_A \colon U \to \{ \ 0, \ 1 \ \}$ defined by
 - $\chi_A(x) = 1$, if $x \in A$,
 - $\chi_A(x) = 0$, if $x \in A^c$;
 - is called the characteristic function of A.

Pause and Think ...

- Let $f : \mathbf{R} \to \mathbf{R}$.
 - If f is a constant function, what does its graph on the Cartesian X-Y plane look like?
 - If f is the identity function, what does its graph on the Cartesian X-Y plane look like?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

Unary Operations

- A unary operation on a set A acts on an element of A and produces another element of A.
- Clearly, a unary operation uop can be thought of as a function f : A → A with f(x) = uop(x).
- Conversely, a function from A to A can be regarded as a unary operation on A.

Example 1

- Let U be some universal set.
- The complement operation on P(U) can be represented as a function
 - f: $P(U) \rightarrow P(U)$ with $f(A) = A^c$.

Binary Operations

- A binary operation on a set A acts on two elements of A and produces another element of A.
- Clearly, a binary operation bop can be represented as a function
 - $f : AxA \rightarrow A$ with f((a,b)) = a bop b.
 - We write f(a,b) instead of f((a,b)).
- Conversely, a function from AxA to A can be regarded as a binary operation on A.

Example 1

- Let U be some universal set.
- The union operation on P(U) can be represented as a function f: P(U)xP(U)→ P(U) with f(A,B) = A∪B.

Pause and Think ...

- Let $U = \{ 0, 1 \}$.
- Give the set representations of the functions for unary complement operation and the binary intersection operation.

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

Function Composition

- Let $f : A \to B$ and $g : B \to C$.
- Since relations can be composed and functions are relations, so functions can be composed like relation composition.
- So relations f and g can be composed and their composition is gf.
- Clearly gf is a relation from A to C.
- But is gf a function?

Function Composition Gives a Function

- Let $f : A \rightarrow B$ and $g : B \rightarrow C$.
- We want to show that $gf : A \rightarrow C$.
 - That is, the composition of two functions is again a function.
- We have to show for any x ∈ A, there is a unique z ∈ C, such that (x,z) ∈ gf.

Existency Proof

- Let $x \in A$.
- Since f is a function from A to B, there is a unique y ∈ B such that (x,y) ∈ f.
- For this $y \in B$, there is a unique $z \in C$ such that $(y,z) \in g$ because g is a function from B to C.
- That is, $(x,z) \in gf$.

Uniqueness Proof

- Let (x,z), $(x,z') \in gf$.
- There exist $y, y' \in B$ such that
 - $(x,y) \in f, (y,z) \in g$
 - $(x,y') \in f, (y',z') \in g$

- But f is a function, so y = y'.
- Now we have $(y,z), (y,z') \in g$.
- But g is a function, so z = z'.

Pause and Think ...

- Can you compose cos and log to obtain the composition (log cos)?
- Can you compose log and exp to obtain the composition (exp log)?

Lecture Topics

- From "High School" Functions to "General" Functions
- Function Notation
- Values, images, inverse images, pre-images
- Codomains, Domains, Ranges
- Sets of Images and Pre-Images
- Equality of Functions
- Some Special Functions
- Unary and Binary Operations as Functions
- The Composition of Two Functions is a Function
- The Values of Function Composition

The Values of Function Composition

- Let $f : A \rightarrow B$ and $g : B \rightarrow C$.
- Since gf : A \rightarrow C, for any x \in A, there is a z \in C, such that (gf)(x) = z.
- That is, $(x,z) \in gf$.
- By the definition of function composition, there is a y ∈ B, such that (x,y) ∈ f and (y,z) ∈ g.
- Since f and g are function, we can write f(x) = y and g(y) = z.
- Substituting y = f(x) in g(y) = z, we have g(f(x))=z.
- That is,
 - (gf)(x) = g(f(x)).
The Values of Function Compositions

- Let $f : A \rightarrow B$, $g : B \rightarrow C$, $h : C \rightarrow D$.
- Since relation composition are associative and functions are relations, we have
 - h(gf) = (hg)f
- Furthermore, we have
 - (h(gf))(x) = h((gf)(x)) = h(g(f(x)))
 - and
 - ((hg)f)(x) = (hg)(f(x)) = h(g(f(x)))
- That is,
 - (h(gf))(x) = ((hg)f)(x) = h(g(f(x)))

Discrete Math. Reading Materials

Pause and Think ...

- Let f(x) = x+1, g(x) = x², and h(x) = 1/(1+x²) be functions **R** from to **R**.
 - Is hgf a function?
 - If so, what is the value of (hgf)(x)?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function.
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

One-To-One Functions, Injections

- Let $f : A \rightarrow B$.
- The function f is one-to-one iff
 - for any $x, x' \in A$,
 - if f(x) = f(x') then x = x'
 - Equivalently,
 - if $x \neq x'$ then $f(x) \neq f(x')$.
- In words, a function is one-to-one iff it maps distinct elements to distinct images.
- A one-to-one function is also called an injection.
- We abbreviate one-to-one as 1-1.

- Let $A = \{ 1, 2, 3 \}$.
- Let B = { a, b, c, d, e }
- Let f = { (1,a), (2,b), (3,a) }
- The function f is not 1-1 because

- Let $A = \{ 1, 2, 3 \}$.
- Let B = { a, b, c, d, e }
- Let f = { (1,e), (2,b), (3,c) }
- The function f is 1-1 because
 - if $x \neq y$, then $f(x) \neq f(y)$

- Let $f : \mathbb{Z} \otimes \mathbb{Z}$ with $f(x) = x^2$.
- The function f is not 1-1 because f(x) = f(-x).

- Let $g : \mathbf{Z}_{+} \otimes \mathbf{Z}$ with $g(x) = x^{2}$.
- The function g is 1-1 because $x^2 = y^2$ implies x = y.

Pause and Think ...

 How many 1-1 functions are there from {1,2,3} to itself?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

Composition of One-To-One Functions

- Theorem
 - Let $f : A \rightarrow B$, $g : B \rightarrow C$.
 - If both f and g are 1-1, then g f is also 1-1.
- That is, the composition of 1-1 functions is again 1-1.

Proof

- Let (gf)(x) = (gf)(y)
- g(f(x)) = g(f(y))
- Since g is 1-1, f(x) = f(y)
- Since f is 1-1, x = y
- That is, gf is a 1-1 function.

The Converse is Almost True

- Let $f : A \rightarrow B$, $g : B \rightarrow C$. Let $gf : A \rightarrow C$ be 1-1.
- Then f is 1-1 but g need not be 1-1.
- Proof
 - Let f(x) = f(y)
 - Then g(f(x)) = g(f(y))
 - (gf)(x) = (gf)(y)
 - x = y
 - That is, f is 1-1.

The Converse is False

- Let $f : A \rightarrow B$, $g : B \rightarrow C$. Let $gf : A \rightarrow C$ be 1-1.
- The following is an example that g is not 1-1.

Discrete Math. Reading Materials

Pause and Think ...

- Let $f : A \rightarrow B$, $g : B \rightarrow C$. Let $gf : A \rightarrow C$ be not 1-1.
 - Are f and g both not 1-1?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

Onto Functions, Surjections

- Let $f : A \rightarrow B$.
- The function f is onto iff
 - for any $y \in B$,
 - there exists some $x \in A$,
 - such that f(x) = y.
- In words, a function is onto iff every element in the codomain has a non-empty pre-image.
- A onto function is also called a surjection.

Onto Means Range is Codomain

- Let $f : A \rightarrow B$ be onto.
- Onto implies $B \subseteq f(A)$.
- Proof
 - Let $y \in B$.
 - There exists $x \in A$ such that f(x) = y.
 - y ∈ f(A)
 - That is, $B \subseteq f(A)$.
- But $f(A) \subseteq B$.
- That is, B = f(A).

- Let A = { 1, 2, 3 } and B = { a, b, c, d, e }
- Let f = { (1,a), (2,a), (3,a) }
- The function f is not onto because there is a b ∈ B without any x ∈ A such that f(x) = b.

- Let A = { 1, 2, 3 } and B = { a, b }
- Let f = { (1,b), (2,b), (3,a) }
- The function f is onto because for any y ∈ B there is a x ∈ A such that f(x) = y.

Discrete Math. Reading Materials

- Let $f : \mathbb{Z} \otimes \mathbb{Z}$ with $f(x) = x^2$.
 - The function f is not onto because there is no integer x such that f(x) = -1.

- Let $g : \mathbb{Z} \otimes \mathbb{Z}_+$ with g(x) = |x| + 1.
 - It is not hard to check that g is onto.

```
Pause and Think ...
```

• Let $g : \mathbb{Z} \otimes \mathbb{Z}_+$ with g(x) = |x|+2. Is g onto?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- <u>Composition of Surjections</u>
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

Composition of Onto Functions

- Theorem
 - Let $f : A \rightarrow B$, $g : B \rightarrow C$.
 - If both f and g are onto, then g f is also onto.
- That is, the composition of onto functions is again onto.

Proof

- Let $z \in C$.
- Since g : B → C is onto, there is a y ∈ B such that
 g(y) = z.
- Since f : A → B is onto, there is a x ∈ A such that
 f(x) = y.
- Combining, we have
 - (gf)(x) = g(f(x)) = g(y) = z
- That is, the composition gf is onto.

The Converse is Almost True

- Let $f : A \rightarrow B$, $g : B \rightarrow C$. Let $gf : A \rightarrow C$ be onto.
- Then g is onto but f need not be onto.
- Proof
 - Since gf is onto, for any z ∈ C, there is a x ∈ A such that (gf)(x) = z.
 - That is g(f(x)) = z.
 - But $f(x) \in B$.
 - So for any $z \in C$, there is a $y = f(x) \in B$ such that g(y) = x.
 - That is, g is onto.

The Converse is False

- Let $f : A \rightarrow B$, $g : B \rightarrow C$. Let $gf : A \rightarrow C$ be onto.
- The following is an example that f is not onto.

Discrete Math. Reading Materials

Pause and Think ...

• Let $f : A \rightarrow B$, $g : B \rightarrow C$. Let $gf : A \rightarrow C$ be not onto.

Are f and g also not onto?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

1-1 and Onto Functions, Bijections, 1-1 Correspondences

• Let $f : A \rightarrow B$.

• The function f is a 1-1 correspondence iff f is 1-1 and onto.

• A 1-1 correspondence is also called a bijection.

- Let $A = \{ 1, 2, 3 \}$ and $B = \{ a, b, c \}$.
- Let $f = \{ (1,b), (2,a), (3,c) \}.$
- The function f is a 1-1 correspondence because it is 1-1 and onto.

Discrete Math. Reading Materials

• Let $f : \mathbb{Z} \otimes \mathbb{Z}$ and f(x) = x - 1.

- Since x-1 = y-1 implies x = y, so f is 1-1.
- Since f(y+1) = y, so f is onto.
- The function f is a 1-1 correspondence.

- Let $f : \mathbb{Z} \otimes \mathbb{Z}_{+}$ and f(x) = |x| + 1.
- Since f(-x) = f(x) but $-x \neq x$ for non-zero x, f is not 1-1.
- When y > 0, we have f(y-1) = y. This shows that f is onto.
- Since f is onto but not 1-1, so f is not a 1-1 correspondence.

Pause and Think ...

 How many 1-1 correspondences are there from {1,2,3} to itself?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- <u>Composition of Bijections</u>
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

Composition of 1-1 Correspondences

- Theorem
 - Let $f : A \rightarrow B$, $g : B \rightarrow C$.
 - If both f and g are 1-1 correspondences, then g f is also a 1-1 correspondence.
- That is, the composition of 1-1 correspondences is a 1-1 correspondence.

Proof

- Since f and g are 1-1, so is gf.
- Since f and g are onto, so is gf.
- Since gf is 1-1 and onto, gf is a 1-1 correspondence.
The Converse is Almost True

- Since gf is 1-1,
 - we have shown that f is 1-1,
 - but g need not be 1-1.
- Since gf is onto,
 - we have shown that g is onto,
 - but f need not be onto.
- That is, f and g need not be 1-1 correspondences.

The Converse is False

 The following example shows that gf is a 1-1 correspondence from A to C, but neither f nor g is a 1-1 correspondence.

Discrete Math. Reading Materials

Making an Injection a Bijection

- Let $f : A \rightarrow B$ be 1-1.
- Let C = f(B).
- Clearly, $f : A \rightarrow C$ is a bijection.
 - Proof:
 - f remains 1-1
 - f has become onto.

Pause and Think ...

Let f : A → B, g : B → C. If gf : A → C is not a bijection, are f and g also not bijections?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

Inverse Functions

- Let $A = \{ 0, 1 \}, B = \{ p, q \}, f = \{ (0,p), (1,p) \}.$
- Clearly f is a function from A to B.
- Clearly f⁻¹ = { (p,0), (p,1) } is a relation from B to A but it is not a function from B to A.
- A function is invertible iff its inverse is also a function.

Theorem

- Let $f : A \rightarrow B$.
- If f is a 1-1 correspondence then f⁻¹ is a function.

Proof

- Let $f : A \rightarrow B$ be 1-1 and onto.
- We want to show $f^{-1} \subseteq B \times A$ is a function.
- We need to show
 - For any y ∈ B, there is a x ∈ A such that (y,x) ∈ f⁻¹.
 - If (y,x), $(y,x') \in f^{-1}$, then x = x'.

Proof --- Every Member of B Has an Image Under f⁻¹

- Let $y \in B$.
- Since f is onto, there is a $x \in A$ such that f(x) = y.
- That is, for any y ∈ B, there is a x ∈ A, such that
 (x,y) ∈ f.
- But $(x,y) \in f$ implies $(y,x) \in f^{-1}$.

Proof --- The Image Under f⁻¹ is Unique

- Let $y \in B$.
- Let $(y,x), (y,x') \in f^{-1}$.
 - We have $(x,y), (x',y) \in f$.
 - This gives f(x) = y = f(x').
 - But f is 1-1 gives x = x'.

Pause and Think ...

- Consider A x B = { 1, 2, 3 } x { a, b, c }.
- Let $f = \{ (1,a), (2,b), (3,a) \}$.
- Is f a function from A to B?
- Is f⁻¹ a function from B to A?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

Inverse Functions

- Let $f : A \rightarrow B$.
- Since f is a function, it is a relation.
- We know f⁻¹ is a relation from B to A.
- If f⁻¹ is a function, what can we say about f?

Theorem

- Let $f : A \rightarrow B$.
- If f⁻¹ is a function, then f is 1-1 and onto.

Proof

- Given f⁻¹: $B \rightarrow A$ is a function.
- We want to show $f : A \rightarrow B$ is 1-1 and onto.
- We need to show
 - If f(x) = f(x'), then x = x'.
 - For any $y \in B$, there is a $x \in A$ such that f(x) = y.

Proof --- f is 1-1

- Let f(x) = f(x') = y.
- We have $(x,y), (x',y) \in f$.
- $(y,x), (y,x') \in f^{-1}$
 - But f⁻¹ is a function, so the image of y under it is unique, that is, x = x'.
- Since x=x' whenever f(x) = f(x'), f is 1-1.

Proof --- f is Onto

- For any $y \in B$, let $f^{-1}(y) = x$.
 - That is, $(y,x) \in f^{-1}$.
 - $(x,y) \in f$ and thus f(x) = y.
- Since any member of B has a non-empty pre-image under f, f is onto.

Pause and Think ...

- Consider A x B = { 1, 2, 3 } x { a, b, c }.
- Let f = { (1,a), (2,b), (3,c) }.
- Is f a function from A to B?
- Is f⁻¹ a function from B to A?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

The Inverse Image and the Pre-Image

- Let $f : A \to B$ and $f^{-1} : B \to A$.
- We have $(x,y) \in f$ iff $(y,x) \in f^{-1}$.
- Since both f and f⁻¹ are functions, the above can be written as

•
$$f(x) = y$$
 iff $f^{-1}(y) = x$.

Theorem

• If the inverse of a function is a function, the inverse function is a 1-1 correspondence.

• Proof

- Let the function be f and f⁻¹ be a function.
- We have $(f^{-1})^{-1} = f$ is a function.
- Since the inverse of f⁻¹ is a function, by a previous theorem, f⁻¹ is a 1-1 correspondence.

Pause and Think ...

- Let $f : A \rightarrow B$.
- Let f(x) = y.
- Can we write $f^{-1}(y) = x$?

Lecture Topics

- One-To-One (1-1) Functions, Injections
- Composition of Injections
- Onto Functions, Surjections
- Composition of Surjections
- One-To-One Correspondences, Bijections
- Composition of Bijections
- f is a Bijection Implies f Inverse is a Function
- f Inverse is a Function Implies f is a Bijection
- Properties of Inverse Functions
- Some Function Composition Properties

Function Composition

- Let $f : A \rightarrow B$ be 1-1 and onto.
- We have f⁻¹: $B \rightarrow A$ is also 1-1 and onto.
- We want to find
 - ∎ ff⁻¹
 - f ⁻¹ f
 - fI_A, I_Bf
 - I_A f⁻¹, f⁻¹ I_B

f f ⁻¹

- We have f $^{-1}$: B \rightarrow A, f : A \rightarrow B.
- Let $(f f^{-1})(x) = y$.

•
$$f(f^{-1}(x)) = y$$

- $f^{-1}(x) = f^{-1}(y)$
- But f⁻¹ is a 1-1 correspondence,
- SO X = Y
- and $f f^{-1}(x) = x$.
- That is, f f $^{-1} = I_B$.

f ⁻¹ f

- We have $f : A \rightarrow B$, $f^{-1} : B \rightarrow A$.
- Let $(f^{-1} f)(x) = y$.
 - $f^{-1}(f(x)) = y$
 - f(x) = f(y)
 - But f is a 1-1 correspondence,
 - SO X = Y
 - and $f^{-1} f(x) = x$.
- That is, $f^{-1} f = I_A$.

$\mathbf{f} \mathbf{I}_{\mathsf{A}}$

• We have $I_A: A \to A$, $f: A \to B$.

• Let
$$(f I_A)(x) = y$$
.

• $f(I_A(x)) = y$

- (f I_A)(x) = f(x)
- That is, $f I_A = f$.

$I_{B}f$

• We have $f : A \rightarrow B$, $I_B : B \rightarrow B$.

• Let
$$(I_B f)(x) = y$$
.

• $I_B (f(x)) = y$

- $(I_B f)(x) = f(x)$
- That is, $I_B f = f$.

Pause and Think ...

• What are $I_A f^{-1}$ and $f^{-1} I_B$?