Lecture 17. Closure properties of recursive and r.e. languages

Theorem 1 The class of recursive languages is closed under

- 1. complementation
- 2. union
- 3. concatenation
- 4. Kleene star (proof similar to (3))
- 5. intersection, (proof similar to (2))

Note: the set of context-free languages is not closed under complementation, but the set of recursive languages is closed under complementation. If L_1 and L_2 are recursive, then $L_1 \cup L_2$ is recursive. **Proof:**

- Let L_1 and L_2 be two recursive languages.
- Then there exists two Turing machines M_1 and M_2 that *decides* M_1 and M_2 , respectively.
- Construct a new 2-tape Turing machine M that operates as follows:
 - 1. Copy the input string w from the first tape to the second tape.
 - 2. Simulate M_1 on the first tape. If M_1 halts at y, then M halts at y. If M_1 halts at n, proceed to step 3.
 - 3. Simulate M_2 on the second tape. If M_2 halts at y, then M halts at y. If M_2 halts at n, then M also halts at n.
- Verify that M indeed decides L₁ ∪ L₂:
 If w ∈ L₁ ∪ L₂ ⇒ w ∈ L₁ or w ∈ L₂ ⇒ (M₁ halts at y) or (M₂ halts at y) ⇒ M halts at y.
 If w ∉ L₁ ∪ L₂ ⇒ w ∉ L₁ and w ∉ L₂ ⇒ (M₁ halts at n) and (M₂ halts at n) ⇒ M halts at n.

If L_1 and L_2 are recursive, then L_1L_2 is recursive. **Proof:**

- Let L_1 and L_2 be two recursive languages.
- Then there exists two Turing machines M_1 and M_2 that *decides* M_1 and M_2 , respectively.
- Construct a nondeterministic 2-tape Turing machine which operates as follows:
 - 1. nondeterministically splits w into two strings x and y such that w = xy, then copy y to the second tape (leaving x on the first tape).
 - 2. Simulate M_1 on the first tape. If M_1 halts at \mathbf{n} , then this computation of M rejects w. If M_1 halts at \mathbf{y} , then M continues to simulate M_2 on the second tape. If M_2 halts at \mathbf{y} , then M accepts w. If M_2 halts at \mathbf{n} , then again this computation rejects w.
- Verify that M indeed decides L_1L_2 :
 - If $w \in L_1L_2 \Rightarrow$ there exists x and y such that w = xywhere $x \in L_1$ and $y \in L_2 \Rightarrow M$ can choose to split w = xy, which will allow it to lead to M_1 accepts x and M_2 accepts y, thus M accepts w in that computation, thus $w \in L(M)$. • If $w \notin L_1L_2 \Rightarrow$ for all x and y such that w = xy either $x \notin L_1$ or $y \notin L_2 \Rightarrow$ for all x and y, either M_1 rejects x or M_2 rejects y. Thus M rejects w, and $w \notin L(M)$.

Closure properties of r.e. languages

Theorem 2 The class of r.e. languages is closed under

- 1. union,
- 2. concatenation,
- 3. Kleene star,
- 4. intersection.

Proof: For concatenation and Kleene star, use nondeterminism similarly as in the proof of recursive languages being closed under concatenation.

For union and intersection, see Question Bank.

Note: The class of r.e. languages is not closed under complementation. (example later).