Greedy Algorithms: The Fractional Knapsack

Version of November 5, 2014

Outline

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

• A greedy algorithm for an optimization problem always makes the choice that looks best at the moment and adds it to the current subsolution.

- A greedy algorithm for an optimization problem always makes the choice that looks best at the moment and adds it to the current subsolution.
- Final output is an optimal solution.

- A greedy algorithm for an optimization problem always makes the choice that looks best at the moment and adds it to the current subsolution.
- Final output is an optimal solution.
- Greedy algorithms don't always yield optimal solutions

- A greedy algorithm for an optimization problem always makes the choice that looks best at the moment and adds it to the current subsolution.
- Final output is an optimal solution.
- Greedy algorithms don't always yield optimal solutions but, when they do, they're usually the simplest and most efficient algorithms available.

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

Capacity of knapsack: K = 4

Capacity of knapsack: K = 4

Fractional Knapsack Problem:

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

Solution:

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

Solution:

2 pd 2 pd A C \$100 \$80

0-1 Knapsack Problem: Can only take or leave item. You can't take a fraction.

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

Solution:

2 pd	2 pd
A	C
\$100	\$80

0-1 Knapsack Problem: Can only take or leave item. You can't take a fraction.

Solution:

The Fractional Knapsack Problem: Formal Definition

• Given K and a set of n items:

weight	<i>w</i> ₁	<i>w</i> ₂	 w _n
value	v_1	<i>v</i> ₂	 Vn

• Find: $0 \le x_i \le 1$, i = 1, 2, ..., n such that

$$\sum_{i=1}^n x_i w_i \le K$$

and the following is maximized:

$$\sum_{i=1}^n x_i v_i$$

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

Sort items by decreasing value-per-pound

• Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i .

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n,

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.

• If $k \geq w_i$,

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.
 - If k ≥ w_i, set x_i = 1 (we take item i), and reduce k = k − w_i, then consider the next unselected item.

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.
 - If $k \ge w_i$, set $x_i = 1$ (we take item *i*), and reduce $k = k w_i$, then consider the next unselected item.
 - If $k < w_i$,

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.
 - If $k \ge w_i$, set $x_i = 1$ (we take item *i*), and reduce $k = k w_i$, then consider the next unselected item.
 - If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i),

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.
 - If k ≥ w_i, set x_i = 1 (we take item i), and reduce k = k − w_i, then consider the next unselected item.
 - If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates.

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i.
 Let the sorted item sequence be 1, 2, ..., i, ... n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.
 - If k ≥ w_i, set x_i = 1 (we take item i), and reduce k = k − w_i, then consider the next unselected item.
 - If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates.

Running time: $O(n \log n)$.

• Observe that the algorithm may take a fraction of an item.

• Observe that the algorithm may take a fraction of an item. This can only be the last selected item.

- Observe that the algorithm may take a fraction of an item. This can only be the last selected item.
- We claim that the total value for this set of items is the optimal value.

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

Given a set of n items $\{1, 2, ..., n\}$.

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G=\langle x_1,x_2,...,x_k
angle$

• x_i indicates fraction of item *i* taken (all $x_i = 1$, except possibly for i = k).

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G=\langle x_1,x_2,...,x_k
angle$

• x_i indicates fraction of item *i* taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G=\langle x_1,x_2,...,x_k
angle$

• x_i indicates fraction of item *i* taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

• y_i indicates fraction of item i taken in O

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G=\langle x_1,x_2,...,x_k
angle$

• x_i indicates fraction of item *i* taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

• y_i indicates fraction of item *i* taken in O (for all *i*, $0 \le y_i \le 1$).

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken (all x_i = 1, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

- y_i indicates fraction of item *i* taken in *O* (for all *i*, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O: $\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken (all x_i = 1, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

- y_i indicates fraction of item *i* taken in *O* (for all *i*, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O: $\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$

Consider the first item *i* where the two selections differ.

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken (all x_i = 1, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

- y_i indicates fraction of item *i* taken in *O* (for all *i*, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O: $\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$

Consider the first item i where the two selections differ.

• By definition, solution G takes a greater amount of item i than solution O

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken (all x_i = 1, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

- y_i indicates fraction of item *i* taken in *O* (for all *i*, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O: $\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$

Consider the first item *i* where the two selections differ.

• By definition, solution G takes a greater amount of item *i* than solution O (because the greedy solution always takes as much as it can).

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken (all x_i = 1, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

- y_i indicates fraction of item *i* taken in *O* (for all *i*, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O: $\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$

Consider the first item *i* where the two selections differ.

 By definition, solution G takes a greater amount of item i than solution O (because the greedy solution always takes as much as it can). Let x = x_i - y_i. Consider the following new solution O' constructed from O:

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y'_i = x_i$.
- In O, remove items of total weight xw_i from items i + 1 to n, resetting the y'_i appropriately.

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y'_i = x_i$.
- In O, remove items of total weight xw_i from items i + 1 to n, resetting the y'_i appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

• The total value of solution O' is greater than or equal to the total value of solution O (why?)

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y'_i = x_i$.
- In O, remove items of total weight xw_i from items i + 1 to n, resetting the y'_i appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

- The total value of solution O' is greater than or equal to the total value of solution O (why?)
- Since *O* is largest possible solution and value of *O*' cannot be smaller than that of *O*, *O* and *O*' must be equal.

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y'_i = x_i$.
- In O, remove items of total weight xw_i from items i + 1 to n, resetting the y'_i appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

- The total value of solution O' is greater than or equal to the total value of solution O (why?)
- Since *O* is largest possible solution and value of *O*' cannot be smaller than that of *O*, *O* and *O*' must be equal.
- Thus solution O' is also optimal.

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y'_i = x_i$.
- In O, remove items of total weight xw_i from items i + 1 to n, resetting the y'_i appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

- The total value of solution O' is greater than or equal to the total value of solution O (why?)
- Since *O* is largest possible solution and value of *O*' cannot be smaller than that of *O*, *O* and *O*' must be equal.
- Thus solution O' is also optimal.

By repeating this process, we will eventually convert O into G, without changing the total value of the selection.

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y'_i = x_i$.
- In O, remove items of total weight xw_i from items i + 1 to n, resetting the y'_i appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

- The total value of solution O' is greater than or equal to the total value of solution O (why?)
- Since *O* is largest possible solution and value of *O*' cannot be smaller than that of *O*, *O* and *O*' must be equal.
- Thus solution O' is also optimal.

By repeating this process, we will eventually convert O into G, without changing the total value of the selection.

Therefore G is also optimal!

The 0-1 Knapsack Problem does not have a greedy solution!

The 0-1 Knapsack Problem does not have a greedy solution!

The 0-1 Knapsack Problem does not have a greedy solution!

Question

Suppose we tried to prove the greedy algorithm for 0-1 knapsack problem **does** construct an optimal solution.

The 0-1 Knapsack Problem does not have a greedy solution!

Question

Suppose we tried to prove the greedy algorithm for 0-1 knapsack problem **does** construct an optimal solution. If we follow exactly the same argument as in the fractional knapsack problem where does the proof fail?