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Chapter 8:  Deadlocks
! Deadlock Examples
! Deadlock Characterization
! Resource Allocation Graph
! Methods for Handling Deadlocks

! Deadlock Prevention
! Deadlock Avoidance
! Deadlock Detection and Recovery from Deadlock 
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Chapter Objectives
! Illustrate how deadlock can occur when mutex locks are used.
! Define the four necessary conditions that characterize deadlock.
! Identify a deadlock situation in a resource allocation graph.
! Evaluate the four different approaches for preventing deadlocks.
! Apply banker’s algorithm for deadlock avoidance.
! Apply the deadlock detection algorithm.
! Evaluate approaches for recovering from deadlock.
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Deadlock in Multithreaded Application

! The order in which the threads run 
depends on how they are scheduled 
by the CPU scheduler

! This example illustrates the fact that 
it is difficult to identify and test for 
deadlocks that may occur only under 
certain scheduling circumstances.
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Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount) 

{ 

mutex lock1, lock2; 

lock1 = get_lock(from); 

lock2 = get_lock(to); 

acquire(lock1); 

acquire(lock2); 

withdraw(from, amount); 

deposit(to, amount); 

release(lock2); 

release(lock1); 

} 

Transactions 1 and 2 execute concurrently.  Transaction  1 transfers 
$25 from account A to account B, and Transaction 2 transfers $50 
from account B to account A
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System Model
! System consists of resources

! Resource types R1, R2, . . ., Rm

CPU cycles, memory space, files, I/O devices

! Each resource type Ri has Wi instances.

! Each process Pi  utilizes a resource as follows:
! request 
! use 
! release
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Deadlock Characterization

! Mutual exclusion: only one process at a time can use a resource

! Hold and wait: a process holding at least one resource is waiting to 
acquire additional resource(s) held by other processes

! No preemption: a resource can be released only voluntarily by the 
process holding it, after that process has completed its task

! Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes 
such that P0 is waiting for a resource that is held by P1, P1 is waiting for a 
resource that is held by P2, …, Pn–1 is waiting for a resource that is held 
by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock involving multiple processes can arise if the following four conditions 
hold simultaneously – they are necessary but not sufficient conditions
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Resource-Allocation Graph

! V is partitioned into two types:
! P = {P1, P2, …, Pn}, the set consisting of all the processes in 

the system

! R = {R1, R2, …, Rm}, the set consisting of all resource types in 
the system

! request edge – directed edge Pi ® Rj

! assignment edge – directed edge Rj ® Pi

A set of vertices V and a set of edges E.
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Resource-Allocation Graph (Cont.)

! Process

! Resource Type with 4 instances

! Pi requests instance of Rj

! Pi is holding an instance of Rj

Pi

Pi

Rj

Rj
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Resource Allocation Graph Example
! One instance of R1
! Two instances of R2
! One instance of R3
! Three instance of R4
! T1 holds one instance of R2 and is 

waiting for an instance of R1
! T2 holds one instance of R1, one 

instance of R2, and is waiting for an 
instance of R3

! T3 is holds one instance of R3
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Resource Allocation Graph With A Deadlock

Cycles exist
! P1 → R1 → P2 → R3 → P3 → R2 →

P1
! P2 → R3 → P3 → R2 → P2

! Processes P1, P2, and P3 are 
deadlocked
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Graph With A Cycle But No Deadlock

A cycle exists
! P1 → R1 → P3 → R2 → P1

! However, there is no deadlock. 
Observe that thread P4 may release 
its instance of resource type R2. 
That resource can then be allocated 
to P3, breaking the cycle.
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Basic Facts

! If a graph contains no cycles Þ no deadlock

! If a graph contains a cycle Þ the system may or may not be in 
a deadlocked state
! if only one instance per resource type, then deadlock
! if several instances per resource type, possibility of deadlock
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Methods for Handling Deadlocks
! Ensure that the system will never enter a deadlock state:

! Deadlock prevention: it provides a set of methods to ensure at least 
one of the necessary conditions cannot hold

! Deadlock avoidance: this requires additional information given in 
advance concerning which resources a process will request and use 
during its lifetime. Within such knowledge, the OS can decide for each 
resource request whether or not a process should wait

! Deadlock detection - allow the system to enter a deadlock state，
periodically detect if there is a deadlock and then recover from it

! Many commercial OSes, esp., for desktops, laptops, and smart 
phones ignore the deadlock problem because of the overhead and 
pretend that deadlocks never occur in the system
! It will cause the system’s performance to deteriorate, because 

resources are being held by processes  that cannot run and because 
more and more processes, as they make requests for resources, will 
enter a deadlocked state – restart the system manually

8.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock Prevention

! Mutual Exclusion – not required for sharable resources (e.g., read-only 
files); but it must hold for non-sharable resources

! Hold and Wait – must guarantee that whenever a process requests a 
resource, it does not hold any other resources
! Require each process to request and be allocated all its resources before it 

begins execution, or request resources only when the process has none
! The disadvantages - low resource utilization, and possible starvation

! No Preemption –
! If a process that is holding some resources requests another that cannot be 

immediately allocated to it, then all resources currently being held are released
! Preempted resources added to list of resources for which the process is waiting
! Process will be restarted only when it can regain its old resources, as well as 

the new ones that it is requesting
! This can only be applied to resources whose state can be easily saved and 

restored such as registers, memory space and database transactions. It cannot 
generally be applied to resources such as locks and semaphores

Restrain the ways request can be made
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Deadlock Prevention (Cont.)
! Circular Wait – impose a total ordering of all resource types, and 

require that each process requests resources in an increasing order 
of enumeration – R = {<R1, R2, …, Rm>}
! This requires that a process cannot request a resource Rj before 

requesting a resource Ri if j > i
! This can be proved by contradiction

! Let the set of processes involved in a circular wait be P = {<P0, P1, …, 
Pn>}, where Pi is waiting for a resource Ri, which is held by process 
Pi+1, so that Pn is waiting for a resource Rn held by P0 . 

! Since process Pi+1 is holding resource Ri while requesting resource Ri+1, 
we must have Ri < Ri+1  for all i.

! This implies R0  < R1 < R2 … < Rn < R0

! R0  < R0, this is impossible, therefore there can be no circular wait

8.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Circular Wait
! Invalidating the circular wait condition is most common.
! Simply assign each resource (i.e. mutex locks) a unique number.
! Resources must be acquired in order.
! If:

first_mutex = 1
second_mutex = 5

code for thread_two could not be 
written as follows:
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Deadlock Avoidance

! The simplest and most useful model requires that each process declares 
the maximum number of resources of each type that it may need

! The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that a circular-wait condition can never exist

! Resource-allocation state is defined by the number of available and 
allocated resources, and the maximum demands of the processes

Requires that the system has some additional a priori information available
!For instance, with the knowledge of complete sequence of requests and 
releases for each process, the system can decide for each request whether 
or not the process  should wait in order to avoid a possible future deadlock.
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Safe State
! When a process requests an available resource, system must decide 

whether such an allocation leaves the system in a safe state

! System is in safe state if there exists a sequence <P1, P2, …, Pn>  
consisting of all processes in the systems such that for each Pi, the 
resources that Pi can still request (based on prior declaration) can be 
satisfied by currently available resources plus resources held by all Pj, 
with j < i. That is:
! If Pi resource needs are not immediately available, then Pi can wait until all Pj

have finished
! When Pj is finished, Pi can obtain needed resources, execute, return allocated 

resources, and terminate
! When Pi terminates, Pi +1 can obtain its needed resources, and so on 

! If no such sequence exists, then the system state is said to be unsafe.
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Basic Facts
! If a system is in safe state Þ no 

deadlocks

! If a system is in unsafe state Þ
possibility of deadlock

! Avoidance Þ ensure that a system 
will never enter an unsafe state
! In this scheme, if a process requests 

a resource that is currently available, 
it may still have to wait (if the 
allocation leads to unsafe state). 

! The resource utilization may be lower 
than it would be otherwise
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Avoidance algorithms
! Single instance of a resource type

! Use a resource-allocation graph

! Multiple instances of a resource type
! Use the banker’s algorithm
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Resource-Allocation Graph Scheme

! Claim edge Pi ® Rj indicates that process Pj may request resource Rj; 
represented by a dashed line

! Claim edge converts to request edge when a process requests a 
resource

! Request edge converts to an assignment edge when the resource is 
allocated to the process

! When a resource is released by a process, assignment edge reconverts 
to claim edge

! Resources must be claimed a priori in the system
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Resource-Allocation Graph Algorithm
! Suppose that process Pi requests a resource Rj

! The request can be granted only if converting the request edge to an 
assignment edge does not result in the formation of a cycle in the 
resource allocation graph
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Banker’s Algorithm
! Multiple instances

! Each process must declare a priori maximum usage

! When a process requests a resource it may have to wait – check to see if 
this allocation results in a safe state or not 

! When a process gets all its resources it must return them in a finite 
amount of time after use

! This is analogous to banking  load system, which has a maximum amount, 
total, that can be loaned at one time to a set of businesses each with a 
credit line.
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Data Structures for the Banker’s Algorithm 

! Available: Vector of length m. If available [j] = k, there are k instances 
of resource type Rj available

! Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most
k instances of resource type Rj

! Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is currently 
allocated k instances of Rj

! Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more instances 
of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types. 
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Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively.  

Initialize:
Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both: 
(a) Finish [i] = false
(b) Needi £ Work
If no such i exists, go to step 4

3.  Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state, otherwise 
unsafe 
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Resource-Request Algorithm for Process Pi
Request = request vector for process Pi. If Requesti [j] = k then process Pi
wants k instances of resource type Rj

1. If Requesti £ Needi go to step 2.  Otherwise, raise error condition, since 
process has exceeded its maximum claim

2. If Requesti £ Available, go to step 3. Otherwise Pi must wait, since 
resources are not available

3. Pretend to have allocated requested resources to Pi by modifying the 
state as follows:

Available = Available  – Request;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

! Run safety algorithm: If safe Þ the resources can be allocated to Pi

! If unsafe Þ Pi  must wait, and the old resource-allocation state is 
restored
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Example of Banker’s Algorithm
! 5 processes P0  through P4; 

3 resource types:
A (10 instances),  B (5 instances), and C (7 instances)

Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2  
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3  
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Example (Cont.)

! The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3 
P1 1 2 2 
P2 6 0 0 
P3 0 1 1
P4 4 3 1 

! The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 
satisfies the safety criteria
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Example (Cont.)
! 5 processes P0  through P4; 3 resource types:

A (10 instances),  B (5 instances), and C (7 instances)

Snapshot at time T0:
Allocation Max Available Need     

A B C A B C A B C         A B C
P0 0 1 0 7 5 3 3 3 2          7 4 3
P1 2 0 0 3 2 2                         1 2 2 
P2 3 0 2 9 0 2                         6 0 0
P3 2 1 1 2 2 2                         0 1 1 
P4 0 0 2 4 3 3                         4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 
satisfies the safety criteria
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Example:  P1 Request (1,0,2)
! Check that Request £ Available, that is, (1,0,2) £ (3,3,2) Þ true

Allocation Need Available
A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2             0 2 0 
P2 3 0 2 6 0 0 
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1 

! Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 
satisfies safety requirement

! Can request for (3,3,0) by P4 be granted? – resource not available

! Can request for (0,2,0) by P0 be granted? – state is not safe
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Deadlock Detection
If a system does not use either a deadlock-prevention, or deadlock-avoidance 
algorithm, then a deadlock situation may occur. In this environment, the system 
may provide

! An algorithm that examines the state of the system to determine whether a 
deadlock can occur 

! An algorithm to recover from the deadlock
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Single Instance of Each Resource Type
! Maintain wait-for graph

! Nodes are processes
! Pi ® Pj   if Pi is waiting for Pj

! Periodically invoke an algorithm that searches for a cycle in the graph. If 
there is a cycle, there exists a deadlock

! An algorithm to detect a cycle in a graph requires an order of n2
operations, where n is the number of vertices in the graph

! The wait-for graph scheme is not applicable to a resource-allocation 
system with multiple instances for each resource type
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Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding Wait-for Graph
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Several Instances for a Resource Type

! Available: A vector of length m indicates the number of available 
resources of each type

! Allocation: An n x m matrix defines the number of resources of each 
type currently allocated to each process

! Request: An n x m matrix indicates the current request of each process. 
If Request [i][j] = k, then process Pi is requesting k instances of resource 
type Rj.
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Detection Algorithm
1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available
(b)  For i = 1,2, …, n, if Allocationi ¹ 0, then 

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti £ Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 £ i £ n, then the system is in deadlock state. 
Moreover, if Finish[i] == false, then Pi is deadlocked

This algorithm requires an order of O(m x n2) operations to detect whether the 
system is in deadlocked state
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Example of Detection Algorithm

! Five processes P0 through P4; three resource types 
A (7 instances), B (2 instances), and C (6 instances)

! Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0             0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3             0 0 0 
P3 2 1 1 1 0 0 
P4 0 0 2 0 0 2

! Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i
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Example (Cont.)

! P2 requests an additional instance of type C
Request
A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0 
P4 0 0 2

! State of system?
! Can reclaim resources held by process P0, but insufficient 

resources to fulfill other processes; requests
! Deadlock exists, consisting of processes P1, P2, P3, and P4
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Detection-Algorithm Usage
! When, and how often, to invoke depends on:

! How often a deadlock is likely to occur?
! How many processes will be affected by a deadlock when it occurs

4 one for each disjoint cycle

! If detection algorithm is invoked arbitrarily, there may be many 
cycles in the resource graph; we would not be able to tell which of 
the many deadlocked processes “caused” the deadlock.

! Invoking the deadlock detection algorithm for every resource 
request will incur considerable overhead in computation. 
! A less expensive alternative is to invoke the algorithm at defined 

intervals – for example, once per hour, or whenever CPU utilization 
drops below 40%
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Recovery from Deadlock: Process Termination

! Abort all deadlocked processes: This clearly breaks the deadlock 
cycle, but at great expense

! Abort one process at a time until the deadlock cycle is eliminated: 
This incurs considerable overhead, since after each process is 
aborted, the deadlock-detection algorithm needs to run

! In which order should we choose to abort? – many factors:
1. Priority of the process
2. How long process has computed, and how much longer to complete?
3. Resources the process has used
4. Resources the process needs to complete
5. How many processes will need to be terminated?
6. Is process interactive or batch?
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Recovery from Deadlock: Resource Preemption

To successively preempt some resources from processes and give 
these resources to other processes until the deadlock cycle is broken

! Selecting a victim – minimize cost (which resources and which processes 
are to be preempted)

! Rollback – return to some safe state, restart process from that state

! Starvation – the same process may always be picked as victim, including 
the number of rollback in cost factor might help to reduce the starvation
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End of Chapter 8


