
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 5:  CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition
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! Operating Systems Examples
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Objectives
! Describe various CPU scheduling algorithms
! Evaluate CPU scheduling algorithms based on scheduling criteria
! Explain the issues related to multiprocessor and multicore scheduling
! Describe real-time scheduling algorithms
! Apply modeling and simulations to evaluate CPU scheduling algorithms
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Basic Concepts
! The objective of multiprogramming 

is to have a process running at all 
times - maximize CPU utilization

! Process execution consists of a 
cycle of CPU execution and I/O wait 
– referred as CPU burst and I/O 
burst （when not running on CPU)

! Whenever CPU is idle, the OS tries 
to select one of processes on the 
ready queue to execute unless the 
ready queue is empty

! The selection of process is carried 
out by the CPU scheduler or called
process scheduler, short-term 
scheduler
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Histogram of CPU-burst Times
! The durations of CPU bursts have been measured extensively over the years. The 

frequency curve is similar to that shown below
! There are a large number of short CPU bursts and a small number of long CPU 

bursts (long-tail distribution). An I/O-bound program typically has many short CPU 
bursts, while a CPU-bound program might have a few long CPU bursts. 

! This distribution is important for designing a CPU-scheduling algorithm
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CPU Scheduler
! The CPU scheduler selects one process or thread from the processes on 

ready queue, and allocates the a CPU core to the selected process
! Queue may be ordered in various ways, even single or multiple queues 

! CPU scheduling may take place in the following four conditions:
1. Switches from running to waiting state, e.g., I/O request, or wait()
2. Process terminates 
3. Switches from running to ready state, e.g., interrupt
4. Switches from waiting to ready, e.g., completion of I/O or from new to ready, a 

new process arrives on the ready queue with a higher priority
! Scheduling under 1 and 2 is non-preemptive, in which a process gives up 

CPU voluntarily (by itself)
! Scheduling under 3 and 4  is preemptive

! Consider access to shared data (discussed in Chapter 6)
! Consider preemption while in kernel mode
! Consider interrupts occurring during crucial OS activities
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Dispatcher

! Dispatcher module allocates the CPU to the 
process selected by the short-term 
scheduler; this involves:
" switching context from one process to 

another
" switching to user mode
" jumping to the proper location in the user 

program to restart that program
! Dispatch latency – the time it takes for the 

dispatcher to stop one process and start 
another running – an overhead

! The number of context switches can be 
obtained by using vmstat on Linux, typically 
hundreds of context switches per second
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Scheduling Criteria
! CPU utilization – fraction of the time that CPU is busy
! Throughput – # of processes or jobs completed per time unit (second)

! Efficient use of the resources (CPU, memory, disk, etc.)
! May be one process in seconds (long), or tens of processes/sec (short)

! Waiting time – amount of time a process waiting on the ready queue
! Turnaround time – the amount of time to execute a particular process, 

measured by the CPU burst time, I/O burst time and waiting time
! Considering single CPU burst, turnaround time = waiting time + CPU burst time

! Response time – the amount of time it takes from when a request was 
submitted until the first response is produced
! Time to echo a keystroke in editor, or games 
! This is more relevant to interactive programs (typically using RR scheduling)
! Considering single CPU burst, this is the time between the completion of first 

CPU time minus the time that this process joins the ready queue
! Fairness

! Resources such as CPU are utilized in some “fair” manner
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Scheduling Criteria (Cont.)
! It is desirable to maximize CPU utilization and throughput and to minimize 

turnaround time, waiting time, and response time. But these can be 
conflicting set of criteria, there are different considerations in practice

! In most cases, we optimize an average measure, e.g., the average waiting 
time. However, under some circumstances, we prefer to optimize the 
minimum or maximum values rather than the average
! Considering all users, we may want to minimize the maximum response time

! For interactive systems (such as a desktop or laptop), it might be more 
important to minimize the variance in the response time than to minimize 
the average response time
! A system with reasonable and predictable response time may be considered 

more desirable than a system that is faster on the average but is highly variable
! Different CPU-scheduling algorithms have different properties. we next 

describe several scheduling algorithms in the context of only one CPU core 
– the system is capable of only running one process or thread at a time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

! Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

! Waiting time for P1 = 0; P2 = 24; P3 = 27
! Average waiting time:  (0 + 24 + 27)/3 = 17
! Average turn-around time: (24+27+30)/3 = 27
! In earlier systems, FCFS means that one program is scheduled to run 

until completion including all I/O
! In multiprogramming systems, this means a process finishes its current 

CPU burst time

P P P1 2 3

0 24 3027
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FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1

! The Gantt chart for the schedule is:

! Waiting time for P1 = 6; P2 = 0; P3 = 3
! Average waiting time:   (6 + 0 + 3)/3 = 3 (much shorter!)
! Average turn-around time: (30+3+6)/3 = 13
! Convoy effect – A short process stuck behind a long process, bad for 

short jobs, potentially (depending purely on the arrival order)  
! Consider one CPU-bound and many I/O-bound processes, FCFS results 

also in low device utilization 
! Waiting in banks: depositing a check, stuck behind new account opening

P1
0 3 6 30

P2 P3
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Round Robin (RR)
! The FCFS scheduling algorithm is non-preemptive. Once the CPU core 

allocated to a process, the process keeps the CPU until it releases CPU
! The FCFS is thus particularly troublesome for interactive systems, where it 

is important that each process get a share of the CPU at regular intervals.
! The round-robin (RR) scheduling algorithm is similar to FCFS scheduling, 

but preemption is added to enable system to switch between processes
! Each process gets a small unit of CPU time (time quantum q), usually 10-

100 milliseconds.  After this time has elapsed, the process is preempted 
and added to the end of the ready queue (exactly like FCFS).

! Given n processes, each process gets 1/n of the CPU time in chunks of 
at most q time units at once – context switching time is ignored
" No process waits more than (n-1)q time units.

! A timer interrupts every quantum to schedule next process, or the process 
blocks upon completing its current CPU burst time when its CPU burst 
time < q
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Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

! The Gantt chart is: 

Waiting time for  P1=6, P2=4,P3=7 
! Average waiting time (6+4+7)/3 = 5.67
! Average turn-around time: (30+7+10)/3 = 15.67 
! Response time for P1=4, P2=7, P3=10, average = 7
! The average waiting time under RR policy can be long, but is inherently 

more “fair” (FIFO order), usually perform better for short jobs than FCFS, 
and offers better average response time – important for interactive jobs 

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

5.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Time Quantum and Context Switch Time

! The performance of the RR algorithm depends heavily on the size of the 
time quantum
" q large Þ FCFS
" q small Þ interleaved, but q must be large with respect to context 

switch time (usually < 10 usec), otherwise overhead is too high
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Comparisons between FCFS and RR
Assuming zero-cost context-switching time, is RR always better than FCFS?
! An example: 10 jobs starting at the same time, each taking 100s of CPU 

time; RR scheduler quantum of 1s; 

" The average job turn-around time is much worse under RR!
4 Bad when all jobs have the same length
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Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR always better than 

FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with RR but can 

be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000
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Turnaround Time Varies With The Time Quantum

! The average turnaround time does not 
necessarily improves as the time quantum 
size increases

! In general, the average turnaround time 
can be improved if most processes finish 
their current CPU bursts within a single 
quantum

! The time quantum can not be too big, in 
which RR degenerates to an FCFS policy

! A rule of thumb: 80% CPU bursts should 
be shorter than the time quantum q
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Shortest-Job-First (SJF) Scheduling
! Noticing that in FCFS and RR, we do not need to know the next CPU burst 

time of each process during scheduling, and scheduling is done based on 
the arrival order 

! What if we knew the future – the next CPU burst time of each process 
! Associate with each process the length of its next CPU burst

" To schedule the process with the shortest next CPU burst 
! The Shortest Job First or SJF scheduling algorithm is optimal – produces 

the minimum average waiting time for a given set of processes
" The difficulty is knowing the length of the next CPU request
" The basic idea is to get the short jobs out of the system sooner
" Big effect on short jobs, relatively small effect on long jobs
" This can be applied to an entire program or the current CPU burst
" Perhaps a more precise term should be the shortest-next-CPU-burst

algorithm, but shortest job first or SJF is commonly used.
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Example of SJF
ProcessArrival Time Burst Time

P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

! SJF scheduling chart

! Average waiting time = (3 + 16 + 9 + 0) / 4 = 7
! The “best” FCFS perform the same if arrival order happens to be  the same 
! Sketch Proof: Moving a short process before a long one decreases the 

waiting time of the short process more than it increases the waiting time of 
the long process. Consequently, the average waiting time decreases

P3
0 3 24

P4 P1
169

P2
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Determining Length of Next CPU Burst

! How to estimate the length based on the past behavior 
" Then pick the process with shortest predicted next CPU burst

! Can be done by using the lengths of previous CPU bursts and exponential 
averaging algorithm

! Commonly, α set to ½ - the relative weight of recent and past history in the 
prediction

! Preemptive version called shortest-remaining-time-first （SRTF）
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Prediction of the Length of the Next CPU Burst

This shows an exponential average with α = 1/2 and τ0 = 10.
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Examples of Exponential Averaging

! a =0
" tn+1 = tn

" Recent history does not count
! a =1

" tn+1 = a tn
" Only the actual last CPU burst counts

! If we expand the formula, we get:

tn+1 = a tn+(1 - a)a tn -1 + … +(1 - a )ja tn -j + … +(1 - a )n +1 t0

! Since both a and (1 - a) are less than or equal to 1, each successive 
term has less weight than its predecessor， thus its effect is diminishing 
exponentially fast 
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Example of Shortest-Remaining-Time-First
! The SJF algorithm can be either preemptive or nonpreemptive. The 

choice arises when a new process arrives at the ready queue while 
another process is still executing

ProcessA arri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

! Preemptive SJF Gantt Chart

! Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5
! Now scheduling needs to be considered when there is an arrival to the 

ready queue (scheduling condition 4) 

P4
0 1 26

P1 P2
10

P3P1
5 17
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Comparison of SJF/SRTF and FCFS 
! SJF/SRTF are the best we can do towards minimizing the average waiting 

time. or the average turnaround time
" Provably optimal (SJF among non-preemptive, SRTF among 

preemptive)
" SRTF is always at least as good as SJF

! SJF/SRTF performs the same as FCFS if all processes have the same 
CPU burst times

! SJF/SRTF can possibly lead to starvation for long process if there is 
always shorter process joining the ready queue
" “fairness” can not be enforced 
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Priority Scheduling
! A priority number (e.g., integer) is associated with each process

! The CPU is allocated to the process with the highest priority (smallest 
integer º highest priority), it can be 
" Preemptive （upon new arrival of a higher priority process)
" Nonpreemptive

! Equal-priority processes are scheduled in FCFS order
! SJF is is a special case of the general priority-scheduling algorithm, 

where priority is the inverse of predicted next CPU burst time

! Problem º Starvation – low priority processes may never execute

! Solution º Aging – as time progresses increase the priority of the 
process
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Example of Priority Scheduling

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

! Priority scheduling Gantt Chart

! Average waiting time = 8.2 msec
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Priority Scheduling w/ Round-Robin
ProcessA arri Burst TimeT Priority
P1 4 3
P2 5 2
P3 8 2
P4 7 1
P5 3 3

q Run the process with the highest priority. Processes with the same priority 
run round-robin

! Gantt Chart with 2 ms time quantum
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Multilevel Queue
! Multilevel queue scheduling can still be a priority scheduling combined 

with round-robin 
! A priority is assigned statically to each process, and a process remains in 

the same queue for the duration of its runtime
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Multilevel Queue (Cont.)
Partition processes into different queues based on process type
! Each queue can have its own scheduling algorithm based on the needs
! The scheduling among the queues, is commonly implemented as fixed-

priority preemptive scheduling or each queue gets certain amount of 
CPU time – time-slice (for instance 60%, 20%, 10%, 10%）
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Multilevel Feedback Queue (MLFQ)

! A process can move between the various queues; aging can be 
implemented this way. This provides the flexibility

! Multilevel-feedback-queue or MLFQ scheduler defined by the 
following parameters:
" The number of queues
" scheduling algorithms for each queue
" method used to determine when to upgrade a process
" method used to determine when to demote a process
" method used to determine which queue a process will enter when 

that process needs service
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Example of Multilevel Feedback Queue
Three queues: 
" Q0 – RR with time quantum 8 milliseconds
" Q1 – RR time quantum 16 milliseconds
" Q2 – FCFS

Scheduling
" A new job enters queue Q0 which is served

FCFS, also preempts jobs from Q1 or Q2 if 
currently running on CPU
! When it gains CPU, job receives 8 ms
! If it does not finish in 8 milliseconds, job 

is moved to the queue Q1

" At Q1 job is again served FCFS and receives 
16 additional milliseconds
! If it still does not complete, it is 

preempted and moved to queue Q2

" If a job from Q1 or Q2 is preempted by a new 
job from Q0, it joins the head of the queue Q1 
or Q2 , respectively

! This approximates SRTF:

! CPU bound jobs drop like a rock
! Short-running I/O bound jobs stay 

near top
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MLFQ Example

Process Arrival Time (ms) Burst Time (ms)
P1 0 10
P2 2 15
P3 5 2
P4 12 14
P5 18 6
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MLFQ Scheduling: Example
Process Burst Time Arrival Time Remaining Time

P1 10 0

0 4

P1

Q0

Q1

Q2

! at time 0: P1 arrives and gets 
service in Q0

! at time 2: P2 arrives and waits 
in Q0

! at time 4: P1 gets preempted 
and waits in Q1; P2 gets 
service in Q0

! at time 5: P3 arrives and waits 
in Q0

! at time 8: P2 gets preempted 
and waits in Q1; P3 gets 
service in Q0

8

P2 P3

10

! at time 10: P3 finishes; P1 gets 
service in Q1

P1

12

! at time 12: P4 arrives and gets 
service in Q0; P1 gets 
preempted in Q1

P4

16

! at time 16: P4 gets preempted 
and waits in Q1; P1 gets 
service in Q1

P1

18

! at time 18: P5 arrives and gets 
service in Q0; P1 gets 
preempted in Q1

22

P5

! at time 22: P5 gets preempted 
and waits in Q1; P1 gets 
service in Q1

P1

24

! at time 24: P1 finishes; P2 gets 
service in Q1

32

P2

! at time 32: P2 gets preempted 
and waits in Q2; P4 gets 
service in Q1

40

P4

! at time 40: P4 gets preempted 
and waits in Q2; P5 gets 
service in Q1

42

P5

! at time 42: P5 finishes; P2 gets 
service in Q2

45

P2

! at time 45: P2 finishes; P4 gets 
service in Q2

P4

47

! at time 47: P4 finishes
P1P2 P2

P1

P3 P3

P2 P1

P4

P1P4 P1

P5

P1P5 P1P2P4P5

P2

P4P5

P4

P5

P2P4

10
P2 15 2

2 5P3
P4
P5

14 12
6 18

8
15P2 15 2
6

1514
252P3

11
2

6

0√

4

P4 14 12 14

4

10

2

P5 6 18 6

2

2

0√
113

102
20√

30√

20√
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MLFQ Scheduling: Example

P1=6+4+4=14

0 4

P1

8

P2 P3

10

P1

12

P4

16

P1

18 22

P5 P1

24 32

P2

40 42

P5

45

P2 P4

47

P4

P1=14, P2=2+16+10=28
2

P1=14, P2=28, P3=3
5

P1=14, P2=28, P3=3, P4=16+5=21P1=14, P2=28, P3=3, P4=21, P5=18
! Average waiting time: (14+28+3+21+18)/5=16.8
! Waiting time for P1=14, P2=28, P3=3, P4=21, P5=18

Process Burst Time Arrival Time Remaining Time
P1 10 0
P2 15 2

2

18

0
0
0
0
0

P3
P4
P5

14
6

5
12
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Multilevel Feedback Queue (MLFQ)
! MLFQ is commonly used in many systems such as BSD Unix, 

Solaris, Window NT and subsequent Window operating systems
! MLFQ has several distinctive advantages:

" It does not need prior knowledge on the next CPU burst time
" It handles interactive jobs well by delivering similar performance as 

that of SJF or SRTF
" It is also “fair” by making progress on CPU-bound jobs 

! The possible starvation problem can be handled by reshuffling the 
jobs to different queues periodically
" E.g., after some period, move all jobs to the top queue
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Thread Scheduling
! On modern OS, kernel-level threads are the ones being scheduled, user-

level threads are managed by a thread library instead
! The OS can use an intermediate data structure between user threads and 

kernel threads, a lightweight process (LWP)
! Appears as a virtual processor on which user threads are scheduled to “run”
! Each LWP attached to kernel thread (one-to-one)
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Thread Scheduling
! Under many-to-one and many-to-many models, thread library “schedules” 

user-level threads to run on LWP. This is known as process-contention 
scope (PCS). 

! Since scheduling competition takes place among the threads belonging to 
the same process, typically done via priority set by programmers
" Thread library usually can not adjust the priority
" PCS will typically preempt the thread currently running in favour of a 

higher-priority (user-level) thread
! Kernel thread scheduled onto available CPU is system-contention scope

(SCS) – competition among all threads in the system – CPU scheduling
! Systems using one-to-one mapping model, such as Windows, Linux, and 

Solaris, schedule threads using only SCS
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Multiple-Processor Scheduling
! CPU scheduling far more complex with multiple CPUs – load sharing
! Traditionally, the term multiprocessor referred to systems that provided 

multiple physical processors, where each physical processor chip 
contained one single-core CPU

! The definition of multiprocessor has evolved significantly, and in modern 
computing systems, multiprocessor now applies to multicore CPUs, 
multithreaded cores, NUMA systems, and heterogeneous multiprocessing

! There are generally two types of multiprocessing systems, asymmetric 
multiprocessing and symmetric multiprocessing 

! Asymmetric multiprocessing – only one processor can access kernel data 
structures, alleviating the need for data sharing. The other processors 
execute only user codes
" All scheduling decisions, I/O processing, and other system activities 

handled by a single processor — the master server
" The master server can become a potential bottleneck
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Symmetric multiprocessing (SMP)
! Symmetric multiprocessing (SMP) – each processor is self-scheduling, with 

one common ready queue, or each having its own private ready queue
! Scheduling proceeds by having the scheduler of each processor examine the 

ready queue and select a thread to run
! To ensure two separate processors do not choose to schedule the same thread 

with a common ready queue - possible race condition (discuss in Chapter 6)
! All modern OS support SMP, including Window, Linux, Mac OS X, as well as 

mobile systems including Android and iOS
��� .VMUJ�1SPDFTTPS 4DIFEVMJOH ���
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core0 core1 coren

T0 T2 Tn
T2

T2...

... core0 core1 coren...
common ready queue

(a)
per-core run queues

(b)

Figure 5.11 Organization of ready queues.

Chapter 6, we could use some form of locking to protect the common ready
queue from this race condition. Locking would be highly contended, however,
as all accesses to the queue would require lock ownership, and accessing the
shared queue would likely be a performance bottleneck. The second option
permits each processor to schedule threads from its private run queue and
therefore does not suffer from the possible performance problems associated
with a shared run queue. Thus, it is the most common approach on systems
supporting SMP. Additionally, as described in Section 5.5.4, having private, per-
processor run queues in fact may lead to more ef!cient use of cache memory.
There are issues with per-processor run queues—most notably, workloads of
varying sizes. However, as we shall see, balancing algorithms can be used to
equalize workloads among all processors.

Virtually all modern operating systems support SMP, including Windows,
Linux, and macOS as well as mobile systems including Android and iOS. In
the remainder of this section, we discuss issues concerning SMP systems when
designing CPU scheduling algorithms.

5.5.2 Multicore Processors

Traditionally, SMP systems have allowed several processes to run in parallel by
providing multiple physical processors. However, most contemporary com-
puter hardware now places multiple computing cores on the same physical
chip, resulting in a NVMUJDPSF QSPDFTTPS. Each core maintains its architectural
state and thus appears to the operating system to be a separate logical CPU.
SMP systems that use multicore processors are faster and consume less power
than systems in which each CPU has its own physical chip.

Multicore processors may complicate scheduling issues. Let’s consider
how this can happen. Researchers have discovered that when a processor
accesses memory, it spends a signi!cant amount of time waiting for the data to
become available. This situation, known as a NFNPSZ TUBMM, occurs primarily
because modern processors operate at much faster speeds thanmemory. How-
ever, a memory stall can also occur because of a cache miss (accessing data
that are not in cache memory). Figure 5.12 illustrates a memory stall. In this
scenario, the processor can spend up to 50 percent of its time waiting for data
to become available from memory.
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Multicore Processors
! Recent trend to place multiple processor cores on same physical chip

! Faster and consumes less power, but complicate the scheduling design
! Memory stall: when a processor accesses memory, it spends a significant 

amount of time waiting for data to become available, primarily because 
modern processors operate at much faster speeds than memory, esp. 
when there is a cache miss

! Multiple hardware threads per core - each hardware thread has its own 
state, program counter (PC), register set appearing as a logical CPU to 
run a software thread. This is known as chip multithreading (CMT)
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Multithreaded Multicore System
The scheduling can takes advantage of memory stall to make progress on 
another hardware thread while memory retrieve happens
! If one thread stalls while waiting for memory, the core can switch to another thread. 

This becomes a dual-thread processor core, or resembles two logical processors
! A dual-threaded, dual-core system presents four logical processors to the 

operating system
! UltraSPARC T3 CPU has 16 cores per chip and 8 hardware threads per core, from 

operating system perspective, this appear to be 128 logical processors
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Multithreaded Multicore System
! From an operating system 

perspective, each hardware thread 
maintains its architectural state, 
such as instruction pointer and 
register set, and thus appears as a 
logical CPU that is available to run 
a software thread

! Chip-multithreading (CMT) assigns 
each core multiple hardware 
threads. (Intel refers to this as 
hyperthreading)

! On a quad-core system with 2 
hardware threads per core, the 
operating system sees 8 logical 
processors.
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Multithreaded Multicore System 

! Two levels of scheduling:

1. The operating system 
deciding which software 
thread (kernel thread) to 
run on a logical CPU – CPU 
scheduling that we cover in 
this Chapter

2. How each core decides 
which hardware thread to 
run on the physical core –
could use RR scheduling 
(UltraSPARC T3)
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Multithreaded Multicore Scheduling
! A user-level thread is schedule to a LWP – a kernel-level thread

" Under many-to-one and many-to-many models, thread library 
schedules user-level threads known as process-contention scope 
(PCS), typically based on the priority set by programmers

! A kernel thread now referred as a software thread is scheduled 
onto a logical CPU – a hardware thread
" CPU or process scheduling – operating system

! A hardware thread is scheduled to run on a CPU core
" Each CPU core decides the scheduling, typically using RR 
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Processor Affinity
Processor affinity – process has an affinity for a processor on which it runs 
! When a thread has been running on one processor, the cache content of 

that processor stores the memory accesses by that thread. We refer to this 
as a thread having affinity for a processor (i.e. “processor affinity”)

! There is a high cost of invalidating and repopulating caches, most SMP 
systems try to avoid migration of processes from one processor to another

! Essentially, per-processor ready queues provide processor affinity for free!
! Soft affinity – the OS attempt to keep a process running on the same 

processor (not guaranteeing that),  and it is possible for a process to 
migrate between processors during load balancing

! Hard affinity – allow a process to specify a subset of processors it may run
! Many systems provide both soft and hard affinity

! For example, Linux implements soft affinity, but it also provides the system call 
sched_setaffinity(), which supports hard affinity by allowing a thread to 
specify the set of CPUs on which it is eligible to run
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Multiple-Processor Scheduling – Load Balancing

! Load balancing attempts to keep workload evenly distributed
! On systems where each processor has its own private ready queue of eligible 

threads to execute
! There are two general approaches to load balancing

! Push migration – a specific task periodically checks the load on each processor, 
and if it finds an imbalance, pushes task(s) from overloaded CPU to idle or less-
busy CPUs

! Pull migration – idle processors pulls waiting task(s) from a busy processor
! Push and pull migration need not to be mutually exclusive and are in fact often 

both implemented in parallel on load-balancing systems. the Linux CFS 
implement both techniques

! Load balancing often counteracts the benefits of processor affinity - natural 
tension between load balancing and minimizing memory access times 
! Thus, scheduling algorithms for modern multicore NUMA systems have become 

quite complex
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Real-Time CPU Scheduling
! Real-time scheduling demands performance guarantee – predictability 
! Hard real-time systems – have stricter requirements. A task must be 

serviced by its deadline; service after the deadline has expired is the 
same as no service at all

! Soft real-time systems – provide no guarantee as to when a critical real-
time process will be scheduled. They guarantee only that the process will 
be given preference over noncritical processes

! The scheduler for a real-time operating system must support a priority 
based algorithm with preemption
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Priority-based Scheduling
! Note that providing a preemptive, priority-based scheduler only guarantees 

soft real-time functionality. Processes have the characteristics: periodic
ones require CPU at constant intervals (periods)
! Has processing time t, deadline d, period p , in which 0 ≤ t ≤ d ≤ p
! The rate of a periodic task is 1/p
! A process may have to announce its deadline requirements to the scheduler. 

The scheduler decides whether to admit the process or not depending on 
whether it can guarantee that the process will complete on time (by its deadline)
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Rate Montonic Scheduling
! A static priority is assigned based on the inverse of its period

! Shorter (longer) period = higher (lower) priority;
! The rationale is to assign a higher priority to tasks requiring CPU more often

! Suppose P1 has a period of 50 (also deadline), and processing time 20. P2 
has a period of 100 (also deadline), and processing time 35. 
" The deadline for each process requires that it complete its CPU burst by the start 

of its next period. Since 50 < 100, P1 is assigned a higher priority than P2
! The CPU utilization of a process Pi as the ratio of its burst to its period ti/Pi the 

CPU utilization of P1 is 20/50 = 0.40 and that of P2 is 35/100 = 0.35, so the total 
CPU utilization of 75 percent
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Missed Deadlines with Rate-Monotonic Scheduling

! Suppose P1 has a period of 50 (also deadline), and processing time 25. P2 
has a period of 80 (also deadline), and processing time 35. 
" Since 50 < 80, P1 is assigned a higher priority than P2
! The CPU utilization of P1 is 25/50 = 0.50 and that of P2 is 35/80 = 0.44, for a 

total CPU utilization of 94 percent
! Process P2 misses the deadline (80) by finishing at time 85
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Earliest Deadline First Scheduling (EDF)

! Earliest-deadline-first (EDF) scheduling assigns priorities dynamically
according to the deadline
! the earlier (later) the deadline, the higher (lower) the priority

! Consider the same example, where P1 has a period of 50 (also deadline), 
and processing time 25. P2 has a period of 80 (also deadline), and 
processing time 35. 
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Rate-monotonic vs. EDF Scheduling
! The rate-monotonic scheduling algorithm schedules periodic tasks using 

a static priority policy with preemption
! The rate-monotonic scheduling is considered to be optimal in that if a set 

of processes cannot be scheduled by this algorithm, it cannot be 
scheduled by any other algorithm that assigns static priorities.

! Unlike the rate-monotonic algorithm, EDF scheduling does not require 
that processes be periodic, nor must a process require a constant 
amount of CPU time per burst. The only requirement is that a process 
announce its deadline to the scheduler when it becomes runnable

! EDF scheduling is theoretically optimal - it can schedule processes such 
that each process can meet its deadline requirements and CPU utilization 
will be 100 percent
! In practice, however, it is impossible to achieve this level of CPU utilization 

due to the cost of context switching between processes and interrupt handling
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Algorithm Evaluation
! Selecting CPU-scheduling algorithm in practice can be difficult – as there 

are many scheduling algorithms, each with its own set of parameters
! The first problem is defining the criteria to be used in selecting an 

algorithm - often defined in terms of CPU utilization, response time, or 
throughput

! Determine criteria – the criteria may include several measures with their 
relative importance, such as
" Maximizing CPU utilization under the constraint that the maximum 

response time is 300 milliseconds
" Maximizing throughput such that turnaround time is (on average) 

linearly proportional to total execution time

5.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deterministic Modeling
! Deterministic modeling takes a particular predetermined workload and 

defines the performance of each algorithm for that workload
! Deterministic modeling is simple and fast. It gives us exact numbers, to 

compare algorithms. However, it requires exact numbers for input, and its 
answers apply only to those cases

! How processes run vary from time to time, so there is no static set of 
processes (or times) to use for deterministic modeling

! Consider 5 processes arriving at time 0:
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Deterministic Evaluation

! For each algorithm, calculate the average waiting time
! Simple and fast, but requires exact numbers for input, applies only to 

those inputs
" FCS is 28ms:

" Non-preemptive SFJ is 13ms:

" RR is 23ms:
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Queueing Analysis
! Though the actual numbers (e.g. process arrival time, CPU or I/O bursts) 

vary from time (system) to time (system), the distributions of CPU and I/O 
bursts, and process arrival-time can be possibly measured and then 
approximated or simply estimated

! The computer system can be described as a network of servers, and 
each server has a queue of waiting processes. 
! The CPU is a server with its ready queue, I/O system with its device queues
! Commonly use the exponential distribution, and described by mean

! Knowing arrival rates and service rates, we can compute the utilization, 
average queue length, average wait time, and so on.

! This area of study is called queueing-network analysis
! Queueing analysis can be useful in comparing scheduling algorithms, but 

the classes of algorithms and distributions that can be handled are very 
limited. Often the assumptions for the mathematical models to be 
tractable are unrealistic in practice
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Queueing Models
! Mathematical approach for handling stochastic workloads
! n = average queue length
! W = average waiting time in queue
! λ = average arrival rate into queue
! Little’s Formula – in steady state (there are mathematical assumptions 

for this to hold, e.g., arrival rate must be smaller than service rate), 
processes leaving queue must equal processes arriving, thus:

n = λ x W
" Valid for any scheduling algorithm and arrival distribution

! For example, if on average 7 processes arrive per second, and normally 
14 processes in queue, then average wait time per process = 2 seconds
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Simulations
! Queueing models is restricted to a few known distributions
! Running simulations involves programming a model of the computer 

system – which is more accurate
! As the clock value is increased, the simulator modifies the system state to 

reflect the activities of the devices, the processes, and the scheduler. 
! As the simulation executes, statistics that indicate algorithm performance 

are gathered and printed.
! The data to drive the simulation can be generated in several ways

! Random number generator according to probability distributions - distributions 
can be defined mathematically (uniform, exponential, Poisson) or empirically

! Trace files to monitor the real system and record the sequence of actual events
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Evaluation of CPU Schedulers by Simulation

actual
process

execution

performance
statistics
for FCFS

simulation

FCFS

performance
statistics
for SJF

performance
statistics

for RR (q ! 14)

trace tape

simulation

SJF

simulation

RR (q ! 14)

• • •
CPU   10
I/O    213 
CPU   12 
I/O    112 
CPU     2 
I/O    147 
CPU 173

• • •
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Implementation
! Even simulations have limited accuracy
! Build a system which allows actual algorithms to run with real data set –

more flexible and general. 
! Implementing a new scheduler and test in real systems has difficulties:

! This incurs high cost (coding the new scheduler), and high risk (e.g., 
potentially introducing new bugs)

! Environments also changes constantly
! Most flexible scheduling algorithms are those that can be altered by the 

system managers so that they can be tuned for a specific application
! A system supporting graphical applications or web (file) service, for 

instance, may have different scheduling needs
! Many UNIX systems allow the system manager to fine-tune the scheduling 

parameters for a particular system configuration
! APIs can be used to modify priority of a process or thread – improving 

performance of specific application, not overall application performance
! The Java, POSIX, and Windows APIs provide such functions
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End of Chapter 5


