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Using the heuristic k =
√
n

Adapting from Devroye, Gyorfi and Lugosi (1996), theoretical performance of the
k-nearest neighbor classifier can be organized, albeit not exclusively, along the following
lines:

k is determined to be a finite, fixed constant, whilst the sample size n → ∞. The
determination of k is a priori, i.e. selected in advance. That is, using prior knowledge, after
exploratory data analysis, or using a heuristic.
k → ∞ whilst k/n → 0. Similar to above in a priori determination of k, but now k is not
fixed relative to sample size n.
Data dependent methods for determining k e.g. using a training set, test set and selecting k
to minimize the estimated classification error rate, or using cross-validation.
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The heuristic k = ⌊
√
n⌋, where ⌊·⌋ is the floor function, would fall under the second

category. From the above book, the following is a quantitative, finite-sample probabilistic
bound on the excess risk Ln − L∗, which in turn implies an asymptotic result:

Theorem 11.1 (Devroye and Gyorfi (1985), Zhao (1987))

Assume that each µ has a density. If k → ∞ and k/n → 0 then for every ϵ > 0 there is an n0
such that for n > n0,

P(Ln − L∗ > ϵ) ≤ 2e−nϵ2/(72γ2
d ),

where the γd is the minimal number of cones centered at the origin of angle π/6 that cover R.
(For the definition of a cone, see Chapter 5). Thus, the k-NN rule is strongly consistent.
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Supplying context on the terms not defined in the extract, Ln = Ln(gn) = P(gn(X ) ̸= Y )
is the risk of the k-nearest neighbor classifier gn(X ), where gn is estimated from a sample
of size n.

L∗ = L(g x) = infg∈GP(g(X ) ̸= Y ), is the Bayes-optimal classification risk, or Bayes error
rate, that is the risk of the Bayes classifier g∗. Glossing over the measure theoretic
technicalities, that the measure µ has a density just means that X has a density.

Parsing the theorem, the main condition requires that k → ∞ as the sample size n → ∞
in such a way that k/n → 0. Your heuristic satisifies this condition because
k = ⌊

√
n⌋ → ∞ and k/n = ⌊

√
n⌋/n ≈ (1/

√
n) → 0.

Taking the theorem as an asymptotic result, the k-nearest neighbor classifier is strongly
consistent, in the sense of

Ln
a.s.−−→ L∗ ⇐⇒ P (limn→∞Ln = L∗) = 1.
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That is, as you collect more observations n → ∞, the classification error rate Ln of the
k-nearest neighbor classifier gn will converge almost surely to the minimal classification
error rate you can possibly hope to achieve, L∗. And that this converges exponentially
quickly.

Furthermore, the result is non-asymptotic in that for finite n, it bounds the probability
that Ln deviates from L∗ by more than ϵ in terms of finite constants.

On the use of data-dependent methods for selecting k
The utility of the above theoretical result then is that it supplies insight on heuristics like
the one you have outlined. Its limitations, like many results in statistical learning theory,
is that the constant γd may be difficult to compute, or in the case that it is computable,
renders the bound too loose to give any practical prescriptions.
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Echoing the sentiment expressed:

k-nearest-neighbor density linkage is strongly set consistent for high-density (density-contour)
clusters if k is chosen that k

n → 0 and k
ln(n) → ∞ as n → ∞.

the authors advocate the use of data-dependent means of selecting k in practice:

Consistency by itself may be obtained by choosing k = ⌊
√
n⌋, but few “if any” users will want

to blindly use such recipes. Instead, a healthy dose of feedback from the data is preferable.

Similar consistency results for the use of a test set to select k based on minimising a
holdout estimate of the classification error rate are supplied therein.

There seems to be some consensus that the kind of result listed above is a continuation
of a line of work in the spirit of Stone (1977). A more recent, specialised treatment is by
Chaudhuri and Dasgupta (2014). Further details can be found in the references below.
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That’s all!

Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 8 / 8


