
COMP 2211 Exploring Artificial Intelligence

Multilayer Perceptron - Derivation of Backpropagation

Dr. Desmond Tsoi
Department of Computer Science & Engineering

The Hong Kong University of Science and Technology, Hong Kong SAR, China

Sigmoid Function

Sigmoid function is typically used as a transfer function between neurons. It is continuous
and differentiable:

σ(x) =
1

1 + e−x

Useful property of sigmoid function is the simplicity of computing its derivative.

dσ

dx
= σ(x)(1− σ(x))

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 2 / 10

Error Calculation

Given a set of training data point tk and output layer output Ok , we can write the error
as:

E =
1

2

∑
k∈K

(Ok − tk)
2

We want to calculate ∂E
∂Wij

and ∂E
∂Wjk

. The rate of change of the error with respect to the

given connective weight, so we can minimize them.

Now, we consider two cases:

1. Output layer node
2. Hidden layer node

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 3 / 10

Case 1: Output Layer Node

E =
1

2

∑
k∈K

(Ok − tk)
2

∂E

∂Wjk
=

∂(1
2

∑
k∈K (Ok − tk)

2)

∂Wjk

= (Ok − tk)
∂Ok

∂Wjk
= (Ok − tk)

∂σ(xk)

∂Wjk

= (Ok − tk)σ(xk)(1− σ(xk))
∂xk

∂Wjk

= (Ok − tk)Ok (1− Ok)Oj

Note

The summation disappears in the derivative.
It is because when we take the partial
derivative with respect to the j-th node, the
only term that survives in the error is j-th, and
thus we can ignore the remaining terms in the
summation.

σ(xk) = Ok

∂xk
∂Wjk

=
∂(WjkOj)
∂Wjk

= Oj

For notation purposes, define δk to be the expression (Ok − tk)Ok(1− Ok), so we can
rewrite the equation above as

∂E

∂Wjk
= Ojδk

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 4 / 10

Case 2: Hidden Layer Node

∂E

∂Wij
=

∂(1
2

∑
k∈K (Ok − tk)

2)

∂Wij
=

∑
k∈K

(Ok − tk)
∂Ok

∂Wij
=

∑
k∈K

(Ok − tk)
∂σ(xk)

∂Wij

=
∑
k∈K

(Ok − tk)σ(xk)(1− σ(xk))
∂xk

∂Wij
=

∑
k∈K

(Ok − tk)Ok (1− Ok)
∂xk

∂Oj
·
∂Oj

∂Wij

=
∑
k∈K

(Ok − tk)Ok (1− Ok)
∂(WjkOj)

∂Oj
·
∂Oj

∂Wij

=
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk ·
∂Oj

∂Wij
=

∂Oj

∂Wij
·
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk

=
∂σ(xj)

∂Wij
·
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk

=
∂σ(xj)

∂xj

∂xj

∂Wij
·
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk

Note

The summation does not disappear because the layers are fully connected, each of the hidden
unit outputs affect the state of each output unit.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 5 / 10

Case 2: Hidden Layer Node (Cont’d)

∂E

∂Wij
= σ(xj)(1− σ(xj))

∂xj

∂Wij
·
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk

= Oj (1− Oj)
∂xj

∂Wij
·
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk

= Oj (1− Oj)
∂(WijOi)

∂Wij
·
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk

= Oj (1− Oj)Oi ·
∑
k∈K

(Ok − tk)Ok (1− Ok)Wjk

= OiOj (1− Oj)
∑
k∈K

δkWjk

Similar to before, we will define all terms besides Oi to be δj = Oj(1− Oj)
∑

k∈K δkWjk ,
so we have

∂E

∂Wij
= Oiδj

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 6 / 10

How Weights Affect Errors?

For an output layer node k ∈ K

∂E

∂Wjk
= Ojδk

where δk = (Ok − tk)Ok(1− Ok)

For a hidden layer node j ∈ J

∂E

∂Wij
= Oiδj

where δj = Oj(1− Oj)
∑

k∈K δkWjk

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 7 / 10

How About the Bias?

If we incorporate the bias term θ into the equation you will find that

∂O

∂θ
= 1

This is why we view the bias term as output from a node which is always one. This holds
for any layer l , a substitution into the previous equations gives us that

∂E

∂θ
= δl

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 8 / 10

The Back Propagation Algorithm using Gradient Descent
1. Run the network forward with your input data to get the network output.
2. For each output node, compute

δk = (Ok − tk)Ok(1− Ok)

3. For each hidden node, compute

δj = Oj(1− Oj)
∑
k∈K

δkWjk

4. Update the weights and biases as follows:
Given

∆Wxy = −ηδyOx

∆θ = −ηδx
Apply

Wxy ←Wxy +∆Wxy

θ ← θ +∆θ

where η denotes learning rate. Typically, η is a value between 0 and 1.
Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 9 / 10

That’s all!

Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 10 / 10

