

COMP 2211 Exploring Artificial Intelligence Multilayer Perceptron - Derivation of Backpropagation Dr. Desmond Tsoi

Department of Computer Science & Engineering The Hong Kong University of Science and Technology, Hong Kong SAR, China

Sigmoid Function

• Sigmoid function is typically used as a transfer function between neurons. It is continuous and differentiable:

$$
\sigma(x) = \frac{1}{1+e^{-x}}
$$

Useful property of sigmoid function is the simplicity of computing its derivative.

$$
\frac{d\sigma}{dx} = \sigma(x)(1 - \sigma(x))
$$

Error Calculation

Given a set of training data point t_k and output layer output O_k , we can write the error as:

$$
E = \frac{1}{2} \sum_{k \in K} (O_k - t_k)^2
$$

- We want to calculate $\frac{\partial E}{\partial W_{ij}}$ and $\frac{\partial E}{\partial W_{jk}}.$ The rate of change of the error with respect to the given connective weight, so we can minimize them.
- Now, we consider two cases:
	- 1. Output layer node
	- 2. Hidden layer node

Case 1: Output Layer Node

$$
E = \frac{1}{2} \sum_{k \in K} (O_k - t_k)^2
$$

\n
$$
\frac{\partial E}{\partial W_{jk}} = \frac{\partial (\frac{1}{2} \sum_{k \in K} (O_k - t_k)^2)}{\partial W_{jk}}
$$

\n
$$
= (O_k - t_k) \frac{\partial O_k}{\partial W_{jk}} = (O_k - t_k) \frac{\partial \sigma(x_k)}{\partial W_{jk}}
$$

\n
$$
= (O_k - t_k) \sigma(x_k) (1 - \sigma(x_k)) \frac{\partial x_k}{\partial W_{jk}}
$$

\n
$$
= (O_k - t_k) O_k (1 - O_k) O_j
$$

Note

The summation disappears in the derivative. It is because when we take the partial derivative with respect to the j-th node, the only term that survives in the error is j-th, and thus we can ignore the remaining terms in the summation.

\n- $$
\sigma(x_k) = O_k
$$
\n- $\frac{\partial x_k}{\partial W_{jk}} = \frac{\partial (W_{jk}O_j)}{\partial W_{jk}} = O_j$
\n

 \bullet For notation purposes, define δ_k to be the expression $(O_k - t_k)O_k(1 - O_k)$, so we can rewrite the equation above as

$$
\frac{\partial E}{\partial W_{jk}} = O_j \delta_k
$$

Case 2: Hidden Layer Node

$$
\frac{\partial E}{\partial W_{ij}} = \frac{\partial(\frac{1}{2}\sum_{k\in K}(O_k - t_k)^2)}{\partial W_{ij}} = \sum_{k\in K}(O_k - t_k)\frac{\partial O_k}{\partial W_{ij}} = \sum_{k\in K}(O_k - t_k)\frac{\partial \sigma(x_k)}{\partial W_{ij}}
$$

\n
$$
= \sum_{k\in K}(O_k - t_k)\sigma(x_k)(1 - \sigma(x_k))\frac{\partial x_k}{\partial W_{ij}} = \sum_{k\in K}(O_k - t_k)O_k(1 - O_k)\frac{\partial x_k}{\partial O_j}\cdot\frac{\partial O_j}{\partial W_{ij}}
$$

\n
$$
= \sum_{k\in K}(O_k - t_k)O_k(1 - O_k)\frac{\partial (W_{jk}O_j)}{\partial O_j}\cdot\frac{\partial O_j}{\partial W_{ij}}
$$

\n
$$
= \sum_{k\in K}(O_k - t_k)O_k(1 - O_k)W_{jk}\cdot\frac{\partial O_j}{\partial W_{ij}} = \frac{\partial O_j}{\partial W_{ij}}\cdot\sum_{k\in K}(O_k - t_k)O_k(1 - O_k)W_{jk}
$$

\n
$$
= \frac{\partial \sigma(x_j)}{\partial W_{ij}}\cdot\sum_{k\in K}(O_k - t_k)O_k(1 - O_k)W_{jk}
$$

\n
$$
= \frac{\partial \sigma(x_j)}{\partial x_j}\frac{\partial x_j}{\partial W_{ij}}\cdot\sum_{k\in K}(O_k - t_k)O_k(1 - O_k)W_{jk}
$$

Note

The summation does not disappear because the layers are fully connected, each of the hidden unit outputs affect the state of each output unit.

Case 2: Hidden Layer Node (Cont'd)

$$
\frac{\partial E}{\partial W_{ij}} = \sigma(x_j)(1 - \sigma(x_j)) \frac{\partial x_j}{\partial W_{ij}} \cdot \sum_{k \in K} (O_k - t_k)O_k(1 - O_k)W_{jk}
$$
\n
$$
= O_j(1 - O_j) \frac{\partial x_j}{\partial W_{ij}} \cdot \sum_{k \in K} (O_k - t_k)O_k(1 - O_k)W_{jk}
$$
\n
$$
= O_j(1 - O_j) \frac{\partial (W_{ij}O_i)}{\partial W_{ij}} \cdot \sum_{k \in K} (O_k - t_k)O_k(1 - O_k)W_{jk}
$$
\n
$$
= O_j(1 - O_j)O_j \cdot \sum_{k \in K} (O_k - t_k)O_k(1 - O_k)W_{jk}
$$
\n
$$
= O_j(1 - O_j) \sum_{k \in K} \delta_k W_{jk}
$$

Similar to before, we will define all terms besides O_i to be $\delta_j = O_j(1-O_j)\sum_{k\in K}\delta_k W_{jk}$, so we have

$$
\frac{\partial E}{\partial W_{ij}} = O_i \delta_j
$$

How Weights Affect Errors?

• For an output layer node $k \in K$

$$
\frac{\partial E}{\partial W_{jk}} = O_j \delta_k
$$

where
$$
\delta_k = (O_k - t_k)O_k(1 - O_k)
$$

• For a hidden layer node $j \in J$

$$
\frac{\partial E}{\partial W_{ij}} = O_i \delta_j
$$

where $\delta_j = O_j(1-O_j)\sum_{k\in K}\delta_k W_{jk}$

How About the Bias?

If we incorporate the bias term θ into the equation you will find that

$$
\frac{\partial \mathit{O}}{\partial \theta}=1
$$

• This is why we view the bias term as output from a node which is always one. This holds for any layer *l*, a substitution into the previous equations gives us that

$$
\frac{\partial E}{\partial \theta} = \delta_I
$$

The Back Propagation Algorithm using Gradient Descent

- 1. Run the network forward with your input data to get the network output.
- 2. For each output node, compute

$$
\delta_k = (O_k - t_k)O_k(1 - O_k)
$$

3. For each hidden node, compute

$$
\delta_j = O_j(1-O_j)\sum_{k\in\mathsf{K}}\delta_k W_{jk}
$$

4. Update the weights and biases as follows:

a Given

$$
\Delta W_{xy} = -\eta \delta_y O_x
$$

$$
\Delta \theta = -\eta \delta_x
$$

• Apply

$$
W_{xy} \leftarrow W_{xy} + \Delta W_{xy}
$$

$$
\theta \leftarrow \theta + \Delta \theta
$$

where η denotes learning rate. Typically, η is a value between 0 and 1.

That's all! Any questions?

