
COMP 2211 Exploring Artificial Intelligence

Convolutional Neural Network

Dr. Desmond Tsoi
Department of Computer Science & Engineering

The Hong Kong University of Science and Technology, Hong Kong SAR, China

Overview

In this topic, we will continue to discuss how to implement an AI for image recognition
and classification.

This time, we use Convolutional Neural Networks (CNNs) to train the AI agent to know
how to recognize/classify images.

CNNs can also be used to train AI agents to solve other problems, such as natural
language processing, speech recognition, recommender systems, image segmentation,
medical image analysis, financial time series, etc.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 2 / 47

Convolutional Neural Network

Convolutional neural networks were developed in the late 1980s and then forgotten about
due to the lack of processing power.

With the powerful Graphical Processing Units (GPUs), the research on CNNs and deep
learning was given new life.

CNNs are used in many applications:

Object recognition in images and videos (e.g., image search in Google, tagging friends’ faces
on Facebook, adding filters in Snapchat and tracking movement in Kinect).
Natural language processing (speech recognition in Google Assistant or Amazon’s Alexa)
Playing games (the defeat of the World ‘Go’ champion by DeepMind at Google)
Medical innovation (from drug discovery to prediction of disease)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 3 / 47

What are Convolutional Neural Networks?
A Convolutional Neural Network (CNN or ConvNet) is very much related to the standard
Artificial Neural Network (ANN) that we have previously encountered.

Definition

A convolutional neural network is a neural network with a convolution operation in at least one
of the layers.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 4 / 47

How Does Convolution Feed Into CNNs?

First, we should recognize that every pixel in an image is a feature, and that means it
represents an input node.

The result from each convolution is placed into the next layer in a hidden node. Each
feature or pixel of the convolved image is a node in the hidden layer.

So, what are the numbers in the kernel? They are weights connecting the feature of the
input image and the node of the hidden layer. These weights that connect to the nodes
need to be learned exactly as in a regular neural network.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 5 / 47

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 6 / 47

Intuitive Idea

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 7 / 47

Convolutional Neural Network

Three main types of layers to build a Convolutional Neural Network (CNN/ConvNet).

Input layer
Convolutional layer
Pooling layer
Fully-connected layer
Output layer

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 8 / 47

Input Layer

The input image is placed into this layer. It can be a single-layer 2D image (grayscale),
3-channel 2D images (RGB color) or 3D.

Note: In the example on the last page, the input images are 3-channel 2D images in 28
pixels by 28 pixels (RGB Color).

Kernels need to be learned, are in the same depth as the input.
Note: In the example on the last page, the depth of kernels applied on the input layer is 3
in size, 5 by 5.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 9 / 47

Convolutional Layer

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 10 / 47

Convolutional Layer

Input:

Image: 28×28× 3
10 Kernels: 10×5×5×3

Assumption: Ignore those pixels that do
not have 24 neighboring pixels.

Output: 24×24×10

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 11 / 47

Stride

Stride is the amount of movement between applications of the kernel to the input image.

The default stride or strides in 2D is (1,1) for the height and the width movement.

The kernel is moved across the image left to right, top to bottom, with a one-pixel
column change on the horizontal movements, then a one-pixel row change on the vertical
movements.

The stride can be changed, which has an effect both on how to kernel is applied to the
image, and in turn, the size of the resulting output.

The stride can be specified in Keras on the Conv2D layer via the ‘stride’ argument and
specified as a tuple with height and width.

Why setting stride to a larger number?

Larger strides lead to lesser overlaps which means lower output volume.

Lesser memory needed for output.

It avoids overfitting especially in case of image processing having a large number of attributes.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 12 / 47

A Closer Look at Spatial Dimensions
Suppose an input image is in size 7 by 7 and convolution is performed using a 3 by 3 kernel.

7

7

7

7

7

7

7

7

7

7

That is why the output is 5×5.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 13 / 47

A Closer Look at Spatial Dimensions with Stride
7

7

7

7

7

7

When the stride is 2, we move the
kernels to 2 pixels at a time and so on.

That is why the output is 3×3.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 14 / 47

A Closer Look at Spatial Dimensions with Stride

7

7

7

7

How about a 7×7 input image and
a 3×3 kernel applied with stride 3?

We cannot apply 3×3 kernel with
stride 3 since it does not fit (it does
not reach the input image
boundary).

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 15 / 47

Useful Formula for Determining the Size of Output Image

Output size = (Size of image dimension - Size of kernel dimension) / Stride + 1

Example: Size of image dimension = 7, Size of kernel dimension = 3

Output size:

Stride 1 ⇒ Output size = (7 - 3)/1 + 1 = 5
Stride 2 ⇒ Output size = (7 - 3)/2 + 1 = 3
Stride 3 ⇒ Output size = (7 - 3)/3 + 1 = 2.33 (Does not fit!)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 16 / 47

Zero Padding

When a kernel convolves a given input image, the dimensions of the output image are
reduced.

For example:

The input image size is 28×28.
Convolving the image using a 3×3 kernel, the output image size is 26×26. Since we ignore
those pixels without 8-neighbors.

How to preserve the size of the output image? Zero padding!!!

Zero padding occurs when we add a border of pixels all with value zero around the
boundaries of the input images.

For implementation of CNN using Keras, there are two categories of padding:

valid (i.e. no padding)
same (i.e. pad the original input with zeros before we convolve so that the output size is the
same size as the input size)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 17 / 47

Zero Padding

0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0

Suppose we do padding with a 1-pixel width border and
with stride 1. What is the output image size?

Example:

Size of image dimension = 7

Size of kernel dimension = 3

Pad with 1 pixel border

Output image size = ((7 + 2) - 3) / 1 + 1 = 7

In general, it is common to see convolutional layers with stride 1, kernels of size K×K, and
zero-padding with (K-1)/2. It will preserve size spatially.

Padded border size

If K = 3, zero pad with (3 - 1) / 2 = 1 (1-pixel border)
If K = 5, zero pad with (5 - 1) / 2 = 2 (2-pixel border)
If K = 7, zero pad with (7 - 1) / 2 = 3 (3-pixel border)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 18 / 47

All-in-One Example

Input image size = 32 × 32 × 3

10 Kernels, each of size 5 × 5 × 3

Stride = 1

Pad with 2 pixels border

Output size = ((32 + 4) - 5) / 1 + 1 = 32

Output volume size = 32 × 32 × 10

Number of parameters in this layer

Each kernel has 5 × 5 × 3 + 1 = 76 parameters (+1 for bias)
We have 10 kernels, and there are 76 × 10 = 760 parameters.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 19 / 47

Non-linearity

Convolution is a linear operation. We need non-linearity; otherwise, 2 convolution layers
would be no more powerful than 1.

The non-linearity is NOT its own distinct layer of CNN, but comes as part of the
convolution layer as it is done in the neurons (just like a normal artificial neural network).

In a neural network, we use different activation functions, typically using sigmoid. But
rectified linear unit (ReLU) is more popular for CNN as it does not require any expensive
computation. It has been shown to speed up the convergence of stochastic gradient
descent algorithms.

Sigmoid(x) = 1
1+e−x Convergence Rates ReLU(x) = max(0, x)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 20 / 47

Pooling Layer
The pooling layer is key to ensuring that the subsequent layers of the CNN can pick up
larger-scale detail than just edges and curves.

It does this by merging pixel regions in the convolved image together (shrinking the
image) before attempting to learn kernels on it.
Two popular ones:

Max pooling: Done by applying a max filter to non-overlapping subregions of the initial
representation.
Average pooling: Done by applying an average filter to non-overlapping subregions of the
initial representation.

12 20 30 0
8 12 2 0
34 70 37 4
112 100 25 12

Max pooling

20 30
112 37

Average pooling

13 8
79 20

Pooling can also tolerate local distortion and translation of patterns of interest and reduce the
computational load, memory usage, and the number of parameters.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 21 / 47

Pooling

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 22 / 47

Fully-connected (Dense) Layer

The fully-connected layer is a traditional multi-layer perceptron that uses a softmax
activation function in the output layer.

The term “fully-connected” implies that every neuron in the previous layer is connected to
every neuron on the next layer.

The output from the convolutional and pooling layer represents high-level features of the
input image.

The purpose of the fully connected layer is to use these features for classifying the input
image into various classes based on the training dataset.

Summary

Convolutional + Pooling layers act as feature extractors from the input image, while the
fully-connected layer acts as a classifier.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 23 / 47

Overall Training Process of CNN
1. We initialize all kernels and parameters/weights with random values.

2. The network takes a training image as input, goes through the forward propagation step
(convolution, ReLU and pooling operations along with the forward propagation in a
fully-connected layer) and finds the output probabilities for each class.

3. Calculate the total error at the output layer.

4. Use backpropagation to update all kernel values/weights and parameter values to
minimize the output error.

5. Repeat steps 2-4 with all images in the training set.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 24 / 47

Recall: Overfitting and Underfitting Problem
Overfitting

Overfitting refers to a model that was trained too much on the particulars of the training data (when
the model learns the noise in the dataset). A model that is overfitted will not perform well on new,
unseen data.

Underfitting

Underfitting typically refers to a model that has not been trained sufficiently. This could be due to
insufficient training time or a model that was simply not trained properly. A model that is under fitted
will perform poorly on the training data and new, unseen data alike.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 25 / 47

Dropout Layer

Large neural network trained on relatively small datasets can overfit the training data.

This has the effect of the model learning the statistical noise in the training data, which
results in poor performance when the model is evaluated on new data, e.g. a test dataset.

Generalization error increases due to overfitting.

Dropout is a simple way to prevent neural networks from overfitting.

Dropout is a regularization method. During training, some number of layer outputs are
randomly ignored or “dropped out”.

Dropout has the effect of forcing nodes within a layer to probabilistically take on more or
less responsibility for the inputs.

Because the outputs of a layer under dropout are randomly subsampled. it has the effect
of reducing the capacity or thinning the network during training. As such, a wider
network, e.g. more nodes, may be required when using dropout.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 26 / 47

How to Dropout?
Dropout is implemented per-layer in a neural network.

It can be used with most types of layers, such as dense fully-connected layers,
convolutional layers, etc.

Dropout may be implemented on any or all hidden layers in the network and the input
layer.

It is not used on the output layer.

A parameter is introduced that specifies the probability at which the outputs of the layer
are dropped out, or inversely, the probability at which outputs of the layer are retained.

A common value is a probability of 0.5 for retraining the output of each node in a hidden
layer.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 27 / 47

Handwritten Digits Recognition using CNN

We will build a CNN model to recognize/classify handwritten digits.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 28 / 47

Dataset
We use the Modified National Institute of Standards and Technology (MNIST) dataset.
This dataset contains two sets of samples:

Training data: 60000 28 pixel ×28 pixel images of handwritten digits from 0 to 9.
Testing data: 10000 28 pixel × 28 pixel images.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 29 / 47

Procedures
1. Import required libraries and define global variables
2. Load and prepare the data
3. Build the model
4. Compile the model
5. Train the model
6. Evaluate the model accuracy
7. Save the model
8. Use the model

We do not explore the data this time. Why?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 30 / 47

1. Import Required Libraries and Define Global Variables

import numpy as np # Import numpy library
import matplotlib.pyplot as plt # Import mathplot library
import datetime # Import datetime library
from keras.datasets import mnist # Import MNIST dataset
from keras.models import Sequential # Import Sequential class
from keras.layers import Conv2D, MaxPooling2D # Import Conv2D, MaxPooling2D class
from keras.layers import Dense, Dropout, Flatten # Import Dense, Dropout, Flatten class
from keras.utils import np_utils # Import numpy-related utilities
from keras.callbacks import TensorBoard # Import TensorBoard class
from keras.models import load_model # Import load model method
from tensorflow.keras.utils import plot_model # Import plot model method
from tensorflow.math import confusion_matrix # Import confusion matrix method
Import spare categorical crossentroy loss
from tensorflow.keras.metrics import categorical_crossentropy
batch_size = 128 # Number of samples per gradient update
num_classes = 10 # Number of classes in the dataset
epochs = 1 # Number of epochs to train the model
img_rows, img_cols = 28, 28 # Image dimensions

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 31 / 47

2. Load and Prepare the Data

Load data
x train is a NumPy array of grayscale image data with shapes (60000, 28, 28)
y train is a NumPy array of digit labels (in range 0-9) with shape (60000,)
x test is a NumPy array of grayscale image data with shapes (10000, 28, 28)
y test is a NumPy array of digit labels (in range 0-9) with shape (10000,)
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000,28,28,1) # Reshape the data to 4-dimension
x_test = x_test.reshape(10000,28,28,1) # Reshape the data to 4-dimension

There are 10 classes and classes are represented as unique integers
To do so, transforming the integer into a 10 element binary vector with
a 1 for the index of the class value, and 0 values for all other classes
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 32 / 47

3. Build the Model

Instead of building the model from scratch, we will use the software library, Keras, instead.

Layers

Layer 1: Convolutional layer with 32 3×3 kernels and ReLU activation
(Input size: 28×28×1)
Layer 2: Convolutional layer with 64 3×3 kernels and ReLU activation
Layer 3: Max Pooling layer with a 2×2 kernel.
Layer 4: Dropout layer with a rate 0.25
It randomly sets input units to 0 with a frequency of 0.25 at each step during training time,
which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1-rate) such that the
sum over all inputs is unchanged.
Layer 5: Flatten layer that will flatten 2D image into 1D
Layer 6: Dense layer with 128 neurons and ReLU activation
Layer 7: Dropout layer with a rate 0.5
Layer 8: Dense layer with 10 neurons (1 per class) and Softmax activation

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 33 / 47

model = Sequential() # Create a Sequential object
Add a convolutional layer with 32 kernels, each of size 3x3
Use ReLU activation function, padding="valid", strides=(1,1)
Specify the input size to this convolutional layer: (28,28,1)
Note: Input size needs to be specified for the first layer only
model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1)))
Add another convolutional layer with 64 kernels, each of size 3x3
Use ReLU activation function, padding="valid", strides=(1,1)
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
Add a max pooling layer of size 2 x 2
model.add(MaxPooling2D(pool_size=(2, 2)))
Add a dropout layer to prevent a model from overfitting
model.add(Dropout(0.25))
Add a flatten layer to convert the pooled data to a single column
that is passed to the fully-connected layer
model.add(Flatten())
Add a dense layer (fully-connected layer) and use ReLU activation function
model.add(Dense(units=128, activation='relu'))
Add a dropout layer tpo prevent a model from overfitting
model.add(Dropout(0.5))
Add a dense layer (fully-connected layer) and use Softmax activation function
model.add(Dense(units=num_classes, activation='softmax'))

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 34 / 47

Print model summary
model.summary()

Layer (type) Output Shape Param #

===
conv2d (Conv2D) (None, 26, 26, 32) 320

conv2d_1 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d (MaxPooling2D) (None, 12, 12, 64) 0

dropout (Dropout) (None, 12, 12, 64) 0

flatten (Flatten) (None, 9216) 0

dense (Dense) (None, 128) 1179776

dropout_1 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 10) 1290

===
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Plot the model
plot_model(model, show_shapes=True,

show_layer_names=True)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 35 / 47

4. Compile the Model

Compile the model, i.e., configures the model for training
Use crossentropy loss function since there are two or more label classes.
Use adam algorithm (a stochastic gradient descent method)
Use accuracy as metric, i.e., report on accuracy
model.compile(optimizer='adam', # Default learning rate is 0.001

loss=categorical_crossentropy,
metrics=['accuracy'])

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 36 / 47

5. Train the Model

Create TensorBoard object to track experiment metrics like loss and
accuracy, visualizing the model graph, etc.
log_dir=".logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1)

Fit the model, i.e., train the model
Specify training data and labels
Speicfy batch size, i.e., number of samples per gradient update
Specify validation data, i.e., data on which to evaluate the loss
Write TensorBoard logs after every batch of training to monitor our metrices
training_history = model.fit(x_train, y_train,

batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback]

)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 37 / 47

6. Evaluate the Model Accuracy

Evaluate the model
Specify test data and labels
Set verbose to 0, i.e., slient (no progress bar)
validation_loss, validation_accuracy = model.evaluate(x_test, y_test, verbose=0)
Print loss and accuracy
print('Validation loss:', validation_loss)
print('Validation accuracy:', validation_accuracy)

Output
Validation loss: 0.07229845970869064
Validation accuracy: 0.9776999950408936

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 38 / 47

7. Save the Model

Save the entire model to an HDFS (Hadoop Distributed File System) file.

The .h5 extension of the file indicates that the model should be saved in Keras format as
an HDFS file.
model_name = 'digits_recognition_cnn.h5'
model.save(model_name, save_format='h5')

loaded_model = load_model(model_name)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 39 / 47

8. Use the Model
To use the model, we call predict() function.
image_index = (int)(input("Enter an image index: ")) # Get image index from user
Show the image in greyscale
plt.imshow(x_test[image_index].reshape(28,28),cmap='Greys')
Use the model to do prediction by specifying the image.
Get back a numpy array of prediction
prediction = loaded_model.predict(x_test[image_index].reshape(1,28,28,1))
Print the predicted result, i.e., the one with maximum value
print('Predicted result:', prediction.argmax())

Output

Enter an image index: 10
Predicted result: 0

Enter an image index: 20
Predicted result: 9

Enter an image index: 30
Predicted result: 3

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 40 / 47

Typical CNN Architecture

Typical CNN models for classification tasks stack different types of layers as follows:

A few convolutional layers (usually with ReLU activation)
Then, a pooling layer
Then, a few convolutional layers (usually with ReLU activation) and a pooling layer, and so
on
Then, one or more fully connected layers (usually with ReLU activation)
Then, a final fully connected softmax layer

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 41 / 47

Typical CNN Architecture

Generally, the convolutional and pooling layers are for feature learning, and the
fully-connected layers are for classification.

Doing through the convolutional layers, the feature maps typically get smaller but deeper
(i.e. more feature maps per layer).

The fully connected layers form an ordinary feedforward neural network to which the
transformed inputs are fed.

Instead of using a convolutional layer with a large kernel size (e.g. 9×9 with 81
parameters), it is better to stack two convolutional layers with smaller kernels (e.g. 3×3)
with 18 parameters for the two layers together.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 42 / 47

Practice Problem

Given a 5×5 input image

5 1 3 7 8

2 4 6 1 7

3 4 9 7 2

4 9 4 5 9

7 9 8 7 9

and the 3×3 kernel

3 0 0

0 0 0

0 0 -3

Estimate the output of convolving the input image with the kernel. Assume zero-padding
with 1 pixel border is performed.
(Remark: Don’t forget to flip the kernel.)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 43 / 47

Answer:

12 18 3 21 0

12 12 18 -3 -21

27 6 3 9 -3

27 15 9 0 -21

0 -12 -27 -12 -15

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 44 / 47

Practice Problem

Suppose we have a Convolutional Neural Network (CNN):

Input layer: An input color image of size 128×128×3.
First convolutional layer: 5 different kernels, each of size 3×3×3 (no zero padding and stride
of size 5).
First max-pooling layer: Size 2×2.
Second convolutional layer: 3 different kernels, each of size 5×5×5 (zero padding of size 2
and stride of size 2).
· · ·

1. What is the dimension of the output of the first convolutional layer, and how many weights
must be learned for this layer (Assume any bias weights are not included).

2. What is the main purpose of doing pooling during training in a deep neural network? Also,
what is the dimension of the output of the first pooling layer?

3. What is the dimension of the output of the second convolutional layer, and how many
weights must be learned for this layer (Assume any bias weights are not included)?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 45 / 47

Answer:

1. The dimension of the output of the first convolutional layer is 5×26×26. As each unit in
the convolutional layer is connected to 5×3×3×3 = 135 units, these weights are shared
across all units in this layer. So, the number of weights to be learned is 135.

2. The main purpose of doing pooling during training is to make sure that the subsequent
layers of the CNN can pick up larger-scale detail. The dimension of the output of the
pooling layer is 5×13×13.

3. The dimension of the output of the second convolutional layer is 3×7×7. As each unit in
the convolutional layer is connected to 3×5×5×5 = 375 units, these weights are shared
across all units in this layer. So, the number of weights to be learned is 375.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 46 / 47

That’s all!

Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 47 / 47

