COMP 2211 Exploring Artificial Intelligence
Digital Image Processing Fundamentals
Dr. Desmond Tsoi

Department of Computer Science & Engineering L
The Hong Kong University of Science and Technology, Hong Kong SAR, China (

Convolutional Neural Network

@ Convolutional Neural Network (CNN or ConvNet) is a class of Artificial Neural Networks
applied to analyze visual imagery.

@ Research has demonstrated that preprocessing images before feeding them to CNN would
significantly improve the classification /recognition accuracy.

@ To learn how to preprocess images and use this powerful tool to tackle Computer Vision
tasks, you will first be introduced to digital image processing fundamentals.

CONVOLUTION

| M‘:\‘lilm‘\w =
= { =
B (= 7
Mz, A
— —----—| oSS
d 2 - @ - = P
dl Ju @ o - —
B - o =
KERNELS ONE OUTPUT - BACKDROP
3x3xXN INPUT CHANNEL PER
CHANNELS, KERNEL
o Wasts- =

WEIGHT B“;\

UPDATE LEARNING DEKNNNE oF
LOSS WITH RESPECT
W

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Image Preprocessing

@ Image preprocessing refers to processing an image so that the
resulting image is more suitable than the original for a
specific application.

@ A preprocessing method that works well for one application
may not be the best method for another application.

@ Some preprocessing tasks:

o Shading correction

o De-blurring

o De-noising

o Contrast enhancement

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Image Preprocessing

Shading Correction

De-blurring De-noising Contrast Enhancement

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Digital Image Processing
e Digital image processing (DIP) is the method to manipulate a digital image to either
enhance the quality or extract relevant information.
@ These methods provide the foundation to preprocess images that are more suitable for
specific applications.

Part |

Digital Image Fundamentals

/05 Rim 3555 desmondOust e COMP 2211 (Spring 2022 /98
Digital Image Image Coordinate System

o A digital image is a two-dimensional grid of intensity values, represented by I(x,y), where
x and y are coordinates, and the value of | at coordinates (x,y) is called intensity.

@ Pixels: Short for Picture Element. A pixel is a single point (dot) in an image.

@ Dimensions: Specified by the width and height of the image.

e Image width is the number of columns in the image.
o Image height is the number of rows in the image.

An image of dimensions 32x21 (i.e., image width = 32 pixels, image height = 21 pixels)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 7/98

e A specific pixel is specified by its coordinates (x,y) where x is increasing from left to right,
and y is increasing from top to bottom.

@ The origin (0,0) is in the top-left corner.
@ The following shows the coordinate system of digital images:

(0,0) (1,0) (2,0) (3,0) (width-1,0)
(0,1) (1.1) (2.1) (3.1) (width-1,1)
(0, hei.ght—l) (1, height-1) | (2, height-1) | (3, height-1) (width-1, height-1)

e The legal range of x-coordinate is between 0 to width-1

e The legal range of y-coordinate is between 0 to height-1

where width and height are the image width and image height, respectively.

Rm 3553, desmond@ust.hk

COMP 2211 (Spring 2022)

8/98

Grayscale Images

o Grayscale is a range of gray shades from black to white.

o Grayscale images are most commonly used in image processing because the data are
smaller and allow us to process the images in a short time.

@ A grayscale digital image is an image in which the value of each pixel carries only
intensity informaton.

e A grayscale image contains 8-bit/pixel data, which has 28 = 256 different gray levels (0
for black, 127 for gray, and 255 for white).

Black Gray-level = 0
Dark gray Gray-level = 64
Medium gray | Gray-level = 127
Light gray Gray-level = 190
White Gray-level = 255
9/98

Color Images

@ Color images have intensity from the darkest and lightest of 3 different colors, Red,
Green, and Blue (RGB).

@ The mixtures of these color intensities produce a color image.

@ Since RGB images contain 3x8-bit intensities, they are also referred to as 24-bit color
images.

@ An 8-bit intensity range has 256 possible values, 0 to 255.

@ Common colors represented in RGB:

Black RGB = (0, 0, 0)
White RGB = (255, 255, 255) | |
Red RGB = (255, 0, 0) | 24-bit grayscale images are subset of RGB
Green RGB = (0, 255, 0) | images where the RGB intensity are all
Blue RGB = (0, 0, 255) | equal (e.g., Gray and Dark Gray shown
Yellow RGB = (255,255, 0) | | above)
Gray RGB = (128, 128, 128) [i
Dark Gray | RGB = (50, 50, 50) |
10/98

Access Images in Google Drive

@ To access files/images in Google drive, you need to mount your Google Drive to Colab
using the following code:

Import drive from google.colab package
from google.colab import drive

Import os and sys modules

import os, sys

Mount Google Drive

drive.mount ('/content/drive')

Assume a folder "images" has been created, go to the folder "images"
os.chdir('/content/drive/My Drive/images')

Add the path for interpreter to search
sys.path.append('/content/drive/My Drive/images')

& Google Drive

11/98

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Read Images in Colab

@ To read an image, you need to first import matplotlib.image:

import matplotlib.image as mpimg

@ Then use imread() method of the matplotlib.image module.

Syntax

mpimg.imread(fname, format=none)

Parameters:

@ fname: The image file to read: a filename or a file-like object opened in read-binary mode.
@ format: The image file format assumed for reading the data. If format is not given, the format is deduced from the
filename. If nothing can be deduced, PNG is tried.

@ Return value: numpy.array.
@ (M,N) for grayscale images

@ (M,N,3) for RGB images
@ (M,N,4) for RGBA images

PNG images are returned as float arrays (0-1). All other formats are returned as int arrays, with a bit depth
determined by the file's contents.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

12/98

Show Images in Colab

@ To show an image, you need to first import matplotlib.pyplot:
import matplotlib.pyplot as plt

@ Then use imshow() method of the matplotlib.pyplot module.
Syntax
plt.imshow(X, cmap, vmin, vmax)
Parameters:

@ X: The image data. Supported array shapes are

@ (M,N): an image with scalar data. The values are mapped to colors using normalization and a
colormap.

Syntax
Parameters:

@ cmap: str (e.g., 'gray’) or Colormap. The Colormap instance or registered colormap name used to map scalar data
to colors. This parameter is ignored for RGB(A) data.

@ vmin, vmax:

@ By default, imshow scales elements of the numpy array so that the smallest element becomes 0, the largest
becomes 1, and intermediate values are mapped to the interval [0,1] by a linear function.

@ Optionally, imshow can be called with arguments, vmin and vmax. In such case all elements of the array
smaller or equal to vmin are mapped to 0, all elements greater or equal to vmax are sent to 1, and the
elements between vmin and vmax are mapped in a linear fashion into the interval [0,1].

@ Returns Axeslmage
Axeslmage is an image attached to an Axes.

o (M,N,3): an image with RGB values (0-1 float or 0-255 int) V.
@ (M,N,4): an image with RGBA values (0-1 float or 0-255 int), i.e., including transparency.
The first two dimensions (M,N) define the rows and columns of the image.)
1398 1696
Save Images in Colab
Assume Google Drive has been mounted & the path has been added for interpreter to search
Import all the required libraries
. Dimensions: 1000x1600x4
@ To save an image, you need to first import matplotlib.pyplot: import matplotlib.image as mpimg Total number of pixels: 1600000
import matplotlib.pyplot as plt import matplotlib.pyplot as plt 0
. . import numpy as np
@ Then use imsave() method of the matplotlib.pyplot module. 200
Read and show the image w0
Syntax img = mpimg.imread('snorlax.png')
plt.imsave(fname, arr) plt.imshow(img) 00
Parameters: # Find the shape of input image 0
@ fname: a path or a file-like object to store the image in. [height, width, layers] = np.shape(img)
@ arr: The image data. The shape can be one of MxN (luminance), M x N x 3 (RGB) or M x N x 4 (RGBA). 0 200 40 600 800 1000 1200 1400
The first two dimensions (M,N) define the rows and columns of the image. # Print all the required information
° ietulrns Axeslmage hed A print('Dimensions: {}x{}x{}'.format(height, width, layers))
xesimage Is an image attached to an Axes. y print ('Total number of pixels:', width*height)
plt.imsave('snorlax2.png', img) # Save the image
159 16/

Part Il

Image Processing

Original Image Cartoonized Image

Image Processing using OpenCV

@ OpenCV (Open Source Computer Vision Library) is an open source computer vision and
machine learning software library.

@ OpenCV was built to provide a common infrastructure for computer vision applications
and to accelerate the use of machine perception in the commercial products.

@ The library has more than 2500 optimized algorithms, which includes a comprehensive set
of both classic and state-of-the-art computer vision and machine learning algorithms.

@ OpenCV supports a wide variety of programming languages such as Python, C++, Java,

etc.
Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 17/98 18/98
Convert Color Images to Grayscale Convert Color Images to Grayscale

@ In certain problem, you will find it useful to lose unnecessary information from your . . .

. . . @ One way to convert color images to grayscale is to apply the following formula:

images to reduce space and computational complexity.
@ Converting colored images to grayscale images is an example. This is done, as color is not V=020 x R+0587 x G+0.114 x B

necessary to recognize and interpret an image.
@ Grayscale can be good enough for recognizing certain objects, because color images ® To perform the above using OpenCV, you need to first import cv2

contain more information than black and white images, they can add unnecessary import cv2

Complexity and take up more space in memory. @ Then use CVtCOlOr() method of the cv2 module.

Syntax
" " cv2.cvtColor(image, code)
i iy ‘"‘ﬁ 7
| w Parameters:
t df‘ 0‘» e € ‘“t‘ .“’» # @ image: Image to be processed in n-dimensional array
. b 4 . b 4 @ code: Conversion code for colorspace. For converting RGB to grayscale, we use cv2.COLOR_RGB2GRAY
; ? @ Return value: Converted image.
=
19/98 20/98

Assume Google Drive has been mounted & the path has been added for interpreter to search
Import all the required libraries
import cv2

import matplotlib.image as mpimg
import matplotlib.pyplot as plt

Read and show the image

img = mpimg.imread('snorlax.png')
plt.figure()

plt.imshow (img)

Convert color image to gray
grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

Image Affine Transformation

@ An affine transformation is any transformation that preserves collinerity, parallelism as
well as the ratio of distances between the points (e.g., midpoint of a line remains the
midpoint after transformation).

@ It does not necessarily preserve distances and angles.

@ Geometric transformations, such as translation, rotation, scaling, shearing, etc., are all
affine transformations.

@ In general, the affine transformation can be expressed in the form of a linear
transformation followed by a vector addition as follows:

X
X' _ | a0 a0 x| o[boo | _ | a0x+aowy+boo | _ | a0 aon boo y
Show the image y' ap A y bio ajox + any + bio ap a1 bio 1
plt.figure()
plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1) 1000 1200 e 3 3 b
o M= 00 901 P00 | i 5 transformation matrix. To define what transformation you
Save the image a0 an bio
plt.imsave('snorlax-gray.png', graylmg) want to do, you need to define M.
21/ 22/98
Image Translation Image Translation
@ To perform the image affine transformation using OpenCV, you need to first import cv2 e Translation is simply the shifting of object location.
i t 2
mport cv @ Suppose we have a point P(x,y) which is translated by (t, t,), then the coordinates
@ Then use warpAffine() method of the cv2 module. after translation denoted by P'(x’,y’) are given by
Syntax ,
X =X+ tx
cv2.warpAffine(src, M, dsize, flags, borderMode, borderValue) ,
y=y+t
Parameters:
@ src: input image @ In matrix form
@ M: 2 X 3 transformation matrix
@ dsize: size of the output image X
/
@ flags: combination of interpolation methods X _ 1 0 ¢
@ borderMode: pixel extrapolation method y/ - 0 1 t y
@ borderValue: value used in case of a constant border; by default, it is 0 4 1
@ Return value: output image that has the size dsize and the same type as src)
/98 24/

Assume Google Drive has been mounted & the path has been added for interpreter to search

Import all the requird libraries
import cv2

import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np

<matplotlib.image.AxesImage at @x7fc1460d1850>

Read the image
img = mpimg.imread('snorlax.png')

Convert the color image to gray and show it
grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
plt.figure();

plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)

Find the shape of the gray image
rows, cols = graylmg.shape

Form the transformation matrix of translation

M = np.float32([[1, 0, 100],[0, 1, 50]1)

Perform the transformation

translatedImg = cv2.warpAffine(grayImg, M, (cols,rows))

1000 1200 1400

Show the image
plt.figure(); plt.imshow(translatedImg, cmap='gray', vmin=0, vmax=1)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

25/98

Image Reflection

o Reflection refers to mirroring (or flipping) images along x-axis or y-axis.

@ To make sure the resulting image fits the image coordinate, after flipping image along
x-axis, we need to translate it by the amount of number of rows in y-axis. Similarly, after
flipping image along y-axis, we need to translate it by the amount of columns in x-axis.

@ Suppose we have a point P(x,y) which is reflected along the x-axis, then the coordinates

after reflection denoted by P'(x’,y’) are given by
In matrix form

N [x’]_[l 0 0 } ’y(
! - —
y' = —y+ rows y 0 —1 rows 1

e Similarly, a point P(x, y) which is reflected along the y-axis, the coordinates after

reflection denoted by P'(x’,y’) are given by
In matrix form

, X
x' = —x + cols X' _| -1 0 cols y
! y’ 0 1 0
y =y 1
26 /98

Assume Google Drive has been mounted & the path has been added for interpreter to search
Import all the required libraries crutploiin imsge. desinsge 3¢ O7Fc1sGON5D>
import cv2; import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

img = mpimg.imread('snorlax.png') # Read the image

Convert the color image to gray and show it

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

plt.figure(); plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)

rows, cols = grayIlmg.shape # Find the shape of the gray image
Form the transformation matrix of x-axis reflection

M = np.float32([[1, 0, 0], [0, -1, rowsl])

Perform the transformation

xaxisreflection = cv2.warpAffine(grayImg, M, (cols,rows))
plt.figure(); plt.imshow(xaxisreflection, cmap='gray', vmin=0, vmax=1)

Form the transformation matrix of y-axis reflection

M = np.float32([[-1, 0, cols]l, [0, 1, 0]11)

Perform the transformation

yaxisreflection = cv2.warpAffine(grayImg, M, (cols,rows))
plt.figure(); plt.imshow(yaxisreflection, cmap='gray', vmin=0, vmax=1)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Image Rotation

@ Image rotation refers to rotating an image 0 degree along (xo, y0)-

@ Suppose we have a point P(x,y) which is rotated along the center of the image, then the
coordinates after rotation denoted P’(x’,y’) are given by

/

x" = (x — x0)cosd + (y — yo)sind + xo

/

y' = —(x = xo)sinf + (y — yo)cosd + yo

In matrix form

cosf sinf

X —xgcosf — ypsinf + xp
y' | | —sinf cosf

XoSinf — ypcost + yo

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

28/98

Assume Google Drive has been mounted & the path has been added for interpreter to search

import cv2, math; import numpy as np # Import all the required libraries
import matplotlib.image as mpimg; import matplotlib.pyplot as plt

img = mpimg.imread('snorlax.png') # Read the image

Convert the color image to gray and show it

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

plt.figure(); plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)

<matplotlib.image.AxesInage at @x7f2b2ef27290>

rows, cols = graylmg.shape # Find the shape of image

Form the transformation matrix of rotation

The angle for math.sin and math.cos should be in radian.

45 degree = pi/4 radian

angle = math.pi/4

M = np.float32([[math.cos(angle), math.sin(angle),
-(cols//2)*math.cos(angle) - (rows//2)*math.sin(angle) + (cols//2)],

[-math.sin(angle), math.cos(angle),

(cols//2)*math.sin(angle)-(rows//2)*math.cos(angle) + (rows//2)1]1)

Another way to generate the required transformation matrix
The angle for getRotationMatrix2D should be in degree
M = cv2.getRotationMatrix2D((cols//2,rows//2), 45, 1.0)

Perform the transformation
rotate45 = cv2.warpAffine(grayImg, M, (cols,rows))
plt.figure(); plt.imshow(rotate45, cmap='gray', vmin=0, vmax=1)

Image Resizing/Scaling

@ Resizing/Scaling images is a critical preprocessing step in computer vision.

@ Machine learning models train faster on smaller images. Moreover, many deep learning
model architectures require that our images are the same size, and our raw collected
images may vary in size.

@ Resizing is a common approach to make the input images the same size, and it works well
unless you have a very different aspect ratio from the expeccted input shape.

Original

29 /98 Rim 3553, desmondQust COMP 2211 (Spring 2022 /98
Image ReSIZIng/Scallng # Assume Google Drive has been mounted & the path <matplotlib.image.AxesImage at @x7f149d2057de>
. o # has been added for interpreter to search
e To perform the image resizing/scaling using OpenCV, you need to first import cv2
import cv2 # Import all the required libraries
. import cv2
@ Then use re5|ze() method of the cv2 module. import matplotlib.image as mpimg
import matplotlib.pyplot as plt
Syntax
cv2.resize(src, dsize, dst, fx = 0, fy = 0, interpolation = INTER_LINEAR) img = mpimg.imread('snorlax.png') # Read the image
Parameters: # Convert the color image to gray and show it 1000 1200 1400
. grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
° Zrc.: InE)ruht |n?agz]ec " - plt.figure()
@ dsize: The size for the output image 1t.imsh 1 _ ' in=0 =1
@ dst (optional): The output image with size dsize P inshow(graylmg, cmap='gray', vmin=0, vmax=1)
e fx (opt!onal): The scale factor along the horl.zontal axis # Perform the transformation
@ fy (optional): The scale factor along the vertical axis X _ .
)))) resizedImg = cv2.resize(grayImg, (300, 300),
@ interpolation: The algorithm used to reconstruct the new pixels interpolation=cv2.INTER_LINEAR)
@ cv2INTER_NEARNEST (nearest neighbor interpolation)
@ cv2.INTER_LINEAR (bilinear interpoolation) # Show the image
@ cv2.INTER_CUBIC (bicubic interpolation) plt.figure()
@ Returns Axeslmage plt.imshow(resizedImg, cmap='gray', vmin=0, vmax=1)
y
31/9 32/%

Image Cropping # Assume Google Drive has been mounted, & the path

has been added for interpreter to search <matplotlib.image.AxesImage at 0x7f1491def690>

Import all the required libraries
import cv2
import matplotlib.image as mpimg

@ Sometimes, you may want to crop the region of internet (ROI) for further processing. import matplotlib.pyplot as plt

@ For instance, in a face detection application, you may want to drop the face from an
img = mpimg.imread('snorlax.png') # Read the image

image.
@ To crop an image, you can use the same method as numpy array slicing. # Convert the color image to gray and show it 000 1200 100
. . .) grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
@ To slice an array, you need to specify the start and end index of the first as well as the
second dimension. # Show the image
plt.figure()
Syntax plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)
croppedImg = sourcelmg[start_row:end_row, start_col:end_col] J # Obtain part of the image

croppedImg = grayImg[200:733, 300:1100]

Show the image
plt.figure()
plt.imshow(croppedImg, cmap='gray', vmin=0, vmax=1)

3/98 /%
Image Padding Image Padding

@ To pad an image, you need to first import cv2
import cv2

I dding introd ixel d the ed fani .
© IMage padding Introduces New pixels around the edges of an image @ Then use copyMakeBorder() method of the cv2 module.

@ Types of padding

o Constant padding Syntax
o Reflection padding cv2.copyMakeBorder (src, top, bottom, left, right, borderType, value)
o Replication paddin

P P & Parameters:
oOo|0j0|0]|O0O|O0]O 5/44|5|6|6]|5 11|12 |3]3]3 @ src: Source image
oOo|0j0|0]|O|O0O]|O 211]1|2|3|3]2 11|12 |3]3]3 @ top: The border width in number of pixels in top direction
o012 |3 0|0 21111123 |3]2 11|12 |3]3]3 @ bottom: The border width in the number of pixels in bottom direction
O[04 |5|6 0|0 5/ 41456 |6]|5 41414 |5 |6 6|6 @ left: The border width in the number of pixels in left direction
0|07 |8]|]9|0]0 8|7 |7(8|9|9]8 7717189919 @ right: The border width in the number of pixels in the right direction
010101010 0]0 8|77 |819)98 T 778191919 @ borderType: The kind of border to be added
0/0|0|O0|0O0|O0]|O 5/4|4|5|6]|6]|5 71717181999

@ cv2.BORDER_CONST

BORDER_CONSTANT BORDER_REFLECT BORDER_REPLICATE © cv2.BORDER REFLECT
e cv2.BORDER_REPLICATE

@ value (optional): The color of border if border type is cv2.BORDER_-CONSTANT
@ Returns the resulting image

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 35/98 Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 36/98

padImgConst = cv2.copyMakeBorder (grayImg,

50, 50, 50, 50, Example

Assume Google Drive has been mounted cv2.BORDER_CONSTANT, 128) <matplotiib. image.AxesInage at @x7fcidsssbiies
& the path has been added for # Add the image to the first row, second col A SONDER CONSTAE
interpreter to search ax2 = fig.add_subplot(2, 2, 2) 2= -

ax2.title.set_text ('BORDER_CONSTANT')
Import all the required libraries plt.imshow(padImgConst, cmap='gray',
import cv2 vmin=0, vmax=1)
import matplotlib.image as mpimg
import matplotlib.pyplot as plt padImgRef = cv2.copyMakeBorder (grayImg,

300, 300, 300, 300,

Read the image cv2.BORDER_REFLECT)
img = mpimg.imread('snorlax.png') # Add the image to the second row, first col

ax3 = fig.add_subplot(2, 2, 3)
Create subplots ax3.title.set_text('BORDER_REFLECT')
fig = plt.figure(figsize=(12,9)) plt.imshow(padImgRef, cmap='gray',
fig.tight_layout(); vmin=0, vmax=1)

fig.subplots_adjust (wspace=0.2, hspace=0.2)
padImgRep = cv2.copyMakeBorder(grayImg,

Add the image to the first row, first col 300, 300, 300, 300,
axl= fig.add_subplot(2, 2, 1) cv2.BORDER_REPLICATE)
axl.title.set_text('Original') # Add the image to the second row, second col

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) ax4 = fig.add_subplot(2, 2, 4)
plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1) ax4.title.set_text('BORDER_REPLICATE')
plt.imshow(padImgRep, cmap='gray',

vmin=0, vmax=1) 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 37/98 Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 38/98
|mage Histogram # Assume Google Drive has been mounted & the path has been added for interpreter to search

Import all the required libraries
. o . import cv2
function of their intensity. import matplotlib.image as mpimg

@ To find the histogram of an image, you need to first import cv2 import matplotlib.pyplot as plt

@ An image histogram is a graphical representation of the number of pixels in an image as a

import cv2 img = mpimg.imread('snorlax.png') # Read the image

@ Then use calcHist() method of the cv2 module. # Convert the color image to gray and show it

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

800 1000 1200 1400

Syntax

plt.figure() 160000
cv2.calcHist (images, channels, mask, histSize, ranges[, hist[, accumulatel]) plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1) woooo
120000
Parameters: # Convert pixel values from [0,1] to [0,255] ‘:ZZ:
i = * 60000
@ image: Image of type uint8 or float32 represented as “[img]” gizyizggiit _ gi:yiﬁgUfii astype (o uint8) o
@ channels: It is the index of channel for which we calculate histogram. For grayscale image, its value is [0] and color grayimg grayimg : yP P- b
image, you can pass [0], [1], or [2] to calculate histogram of each channel respectively. . 0
@ mask: mask image. To find histogram of full image, it is given as ‘None”. l#:Calfula;e his;?gr?r;:l ImgUint], [0], N (2561, [0,256]) 0 100 B0 20 0
@ histSize: This represents the number of bins. For full scale, we pass [256] ist s cv .(;:a cHist(lgrayImgUint], » hone, > >
@ ranges: This is the range of intensities. Normally, it is [0,256]. plt .flgure.)
@ Return value: Histogram of the image. plt.plot(hist) # Plot and show the histogram

’ plt.show()

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 39/98 Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 40/98

Chracteristics of Image Operations

@ There are many ways to classify image operations.
@ One way for doing so is to be based on the “region” used to process the pixels.
1. Point: The output value at a specific coordinate is dependent only on the input value at the
same coordinate.
2. Local: The output value at a specific coordinate is dependent on the input values in the
neighbourhood of that same coordinate.
3. Global: The output value at a specific coordinate is dependent on all the values in the input
image.
a b a b

Point Local

a Global

o

‘\

® = [m=mo, N=no]

Rm 3553, desmond®@ust.hk

Question

What type of image operation is color to grayscale conversion? :D

v v

s o 1 ree @

- x: ’) - x: ’

Answer:
Point operation! Since the output value at a specific coordinate of the grayscale image is
dependent only on the input value at the same coordinate of the color image.

COMPI22111(Spring 2022) 41/98 42//98
Point-based Operations (Examples) Brightness Adjustment
@ Brightness adjustment: Make images brighter or dimmer
& . _ . & & _ @ To adjust the brightness of an image using OpenCV, you need to first import cv2
o Contrast stretching: Adjust the contrast of images import cv2
@ Gamma correction: Grayscale non-linear transformation @ Then use convertScaleAbs() method of the cv2 module.
o Grayscale threshold: Convert a grayscale image into a black and white binary image Synt
. o . . . YIELS
@ Histogram equallz?tlon. Tranformation where an output image has approximately the cv2. convertScaleAbs (image, alpha = 1, beta = 0)
same number of pixels at each gray level
convertScaleAbs does the following:
Inew(x,y) = min(alpha * I(x,y) + beta, 255)
Inew(x,y) = max(Inew(x,y), 0)
(e}
' Parameters:
@ image: Image to be processed in n-dimensional array
@ alpha: The scale factor. It is 1 by default
@ beta: The delta added to the scaled values. It is O by default.
Input image Output image @ Return value: Converted image.
fix.y) g(x.y) b
43/98 44/98

Assume Google Drive has been mounted & the path has been added for interpreter to search

<matplotlib.image.AxesInage at @x7fc145737b90>
o

Import all the required libraries
import cv2

import matplotlib.image as mpimg
import matplotlib.pyplot as plt

img = mpimg.imread('snorlax.png') # Read the image

Convert the color image to gray and show it

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

plt.figure(); plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)

Convert pixel values from [0,1] to [0,255]
grayImgUint = grayImg+*255
grayImgUint = grayImgUint.astype(np.uint8)

Produce an image that is brighter than the original
brighterImg = cv2.convertScaleAbs(grayImgUint, alpha = 1.0, beta = 64)
plt.figure(); plt.imshow(brighterImg, cmap='gray', vmin=0, vmax=255)

Produce an image that is dimmer than the original
dimmerImg = cv2.convertScaleAbs(grayImgUint, alpha = 1.0, beta = -64)
plt.figure(); plt.imshow(dimmerImg, cmap='gray', vmin=0, vmax=255)

40 60 0 1000 1200 1400

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

45/98

Contrast Stretching

@ Contrast stretching is an image enhancement method which attempts to improve an image by
stretching the range of intensity values.
@ One way to perform contrast stretching is to stretch minimum and maximum intensity values
present to the possible minimum and maximum intensity values.
@ Example:
e Assume 0-255 taken as standard minimum and maximum intensity for 8-bit images.
o If the minimum intensity value (/mis) present in the image is 100, then it is stretched to the
possible minimum value 0.
o Likewise, if the maximum intensity value (/yax) is less than the possible maximum intensity
value 255, then it is stretched out to 255.
e General formula for contrast stretching:
I — Imin

Lhew = x 255
Imax - Imin
where
o [is the current pixel intensity value
® Imin is the minimum intensity value present in the whole image
® Imax is the maximum intensity value present in the whole image
® Ihew is the output intensity value rounded up to the nearest integer value

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

46 /98

Assume Google Drive has been mounted & the path has been added for interpreter to search

Import all the required libraries

import cv2; import numpy as np

import matplotlib.image as mpimg)

import matplotllb.pyplot as plt <mabtplct11h.lmage.AxesImagE at Bx7F351tc8850>

100

Read the image

img = mpimg.imread('snorlax-low-contrast.png') =

300
Convert the color image to gray and show it o
grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
plt.figure(); plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)

Convert pixel values from [0,1] to [0,255]
grayImgUint = grayImg+*255
grayImgUint = grayImgUint.astype(np.uint8)

Find min and max pixel values and perform normalization
min = np.min(grayImgUint)
max = np.max(grayImgUint)
imageContrastEnhance = ((grayImgUint-min)/(max-min))*255

Show the image
plt.figure(); plt.imshow(imageContrastEnhance.astype(np.uint8), cmap='gray', vmin=0, vmax=255)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

47/98

Gamma Correction
@ Gamma defines the relationship between a pixel’s numerical value and its actual

luminance.
Perceived (linear) brightne

Physical (linear) brightness =

joioslof1.9

pslo:osioolo7lo-slosl1 o

@ Without gamma, shades captured by digital cameras would not appear as they did to our
eyes (on a standard monitor).

@ Gamma is also referred to as gamma correction, gamma encoding or gamma compression,
but these all refer to a similar concept.

@ A gamma encoded image has to have “gamma correction” applied when it is viewed —
which effectively converts it back into light from the original scene.

Gamma correction can be performed by adjusting gamma value (7).

e v < 1 will make the image appear darker
e v > 1 will make the image appear lighter
e v =1 will have no effect on the input image

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

48/98

Assume Google Drive has been mounted & the path has been added for interpreter to search
Import all the requlred llbrarles <ma;plcthb,imaga.nxeslmage at @x7f13523ee590>
import cv2; import numpy as np

import matplotlib.image as mpimg; import matplotlib.pyplot as plt

img = mpimg.imread('snorlax.png') # Read the image

Convert the color image to gray and show it

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

plt.figure(); plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)

Convert pixel values from [0,1] to [0,255]

grayImgUint = grayImgx255; grayImgUint = grayImgUint.astype(np.uint8)

Prepare look-up-table and perform gamma correction

gamma = 0.5; invGamma = 1/gamma

table = [((i / 255) ** invGamma) * 255 for i in range(256)]

table = np.array(table, np.uint8)

processedImgl = cv2.LUT(grayImgUint, table)

plt.figure(); plt.imshow(processedImgl, cmap='gray', vmin=0, vmax=255)

Prepare look-up-table and perform gamma correction

gamma = 2.2; invGamma = 1/gamma
table = [((i / 255) ** invGamma) * 255 for i in range(256)]
table = np.array(table, np.uint8)

processedImg2 = cv2.LUT(grayImgUint, table)
plt.figure(); plt.imshow(processedImg2, cmap='gray', vmin=0, vmax=255)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

49/98

Image Thresholding

@ Image thresholding is a simple form of image segmentation.

@ It is a way to create a binary image from a grayscale image or full-color image.

@ This is typically done in order to separate “object” or foreground pixels from background
pixels to aid in image processing.

@ The formula of image thresholding with threshold T is defined as

0 I <T
new — .
255 otherwise
50/98

Assume Google Drive has been mounted & the path has been added for interpreter to search
Import all the required libraries <matplotlib.image.AxesImage at @x7fc145092a50>
import cv2

import matplotlib.image as mpimg
import matplotlib.pyplot as plt

Read the image
img = mpimg.imread('snorlax.png')

Convert the color image to gray and show it
grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
plt.figure(); plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1)

Convert pixel values from [0,1] to [0,255]
grayImgUint = grayImg*255
grayImgUint = grayImgUint.astype(np.uint8)

Perform thresholding
processedImg = grayImgUint > 128

1000 1200 1400

Show the image
plt.figure(); plt.imshow(processedImg, cmap='gray')

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

51/98

Grayscale Thresholding (Otsu’s Method)

@ We need a way to automatically determine the threshold value T so that the result of
thresholding is reproductible.
@ A well-known approach is Otsu’s method
1. Select an initial estimate of the threshold T. A good initial value is the average intensity of
the image.
2. Calculate the mean gray values j1 and py of the partitions, Ry, R».
Partition the image into two groups, Ry, R, using the threshold T.
4. Compute a new threshold

w

1
T= 5(#1 + 12)

5. Repeat steps 2-4 until the mean values f1; and p» in successive iterations do not change.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

52/98

Grayscale Thresholding (Otsu's Method)

@ To perform Otsu's thresholding, you need to first import cv2

import cv2

@ Then use threshold() method of the cv2 module.

Syntax
cv2.threshold(source, thresholdValue, maxVal, thresholdingTechnique)

Parameters:

source: input image array (must be grayscale)
thresholdValue: value of threshold below and above which pixel values will change accordingly

maxVal: Maximum value that can be assigned to a pixel

thresholdingTechnique: The type of thresholding to be applied
(For Otsu’s, we put cv2. THRESH_BINARY + cv2. THRESH_OTSU)

@ Return value: Binary image.

Assume Google Drive has been mounted & the path has been added for interpreter to search

Import all the required libraries)

. Optimal threshold: 153.@

import cv2 <matplotlib.image.AxesInage at Ox7fc14500ef10>
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

Read the image
img = mpimg.imread('snorlax.png')

Convert the color image to gray and show it
grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
plt.figure(); plt.imshow(grayImg, cmap='gray', vmin=0, vmax=1) R

Convert pixel values from [0,1] to [0,255]
grayImgUint = grayImg*255
grayImgUint = grayImgUint.astype(np.uint8)

Perform thresholding using Otsu's method

thresh, processedImg = cv2.threshold(grayImgUint, 120, 255,
cv2.THRESH_BINARY + cv2.THRESH_0TSU)

print ('Optimal threshold:', thresh)

800 1000 1200 1400

y
Show the image
plt.figure(); plt.imshow(processedImg, cmap='gray')
53/98 54/ 98
. . . # Assume Google Drive has been mounted & the path has been added for interpreter to search
Histogram Equalization . : "
Import all the required libraries # Add tl}e image to the first row, second col
import cv2 ax2 = fig.add_subplot(2, 2, 2)
@ Histogram equalization is another technique used to improve contrast of images. import matplotlib.inage as mping ;ﬁ;izﬁhi:&;em(Hist. of original image')
@ The idea is to spread out the most frequent intensity values. import matplotlib.pyplot as plt
X # Read the i # Produce cumulative histogram
@ Algorithm # head the 1mage ,y cumHist = np.cumsum(histl)
img = mpimg.imread('snorlax-low-contrast.png') cumMax = np.max(cumHist)
1. Compute the histogram, H, of the image 5 # Prepare subplots table = nP~array((;;mﬂ?lsl:ér)lp-maX(CumHist))*255,
o 4 fig = plt.figure(figsize=(12,9)) ; - T ;
2. Compute the cumulative histogram, C, of - figtight 1a§§ut<) & equalizedImg = cv2.LUT(gImgUint, table)
. X = Sl _ _ # Add the image to the second row, first col
the image fig.subplots_adjust (wspace=0.2, hspace=0.2) ax3 = fig.add_subplot(2, 2, 3)
. . . ax3.title.set_text("Equalized")
i # Add_the image to tl}e first row, first col plt.imshow(equalizedImg, cmap='gray',
. . 5 =T(r) = gImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) vmin=0, vmax=255)
C(i)y =Y _H() - ! axl = fig.add_subplot(2, 2, 1) ,
. 9 n 1 1 n
j=0 aiil.t.:ltie.?e;_text(Of}glnai!.) - b # Produce histogram
plt.imshow(glmg, cmap='gray', vmin=0, vmax= hist2 = cv2.calcHist([equalizedImg],
3. Map old intensity value to new intensit I - [0], None, [256], [0,255])
P Y y Y Ty # Conyert_plxel values from [0,1] to [0,255] # Add the image to the second row, second col
value as follows: Y e i 0P gImgUJ_.nt - gImg*255 . ax4 = fig.add_subplot(2, 2, 4)
0 = Y 1 £ glmgUint = gImgUlnt.astype(np.u1nt8) ax4.title.set_text('Hist. of equalized image')
/ o C(/) #.Produce hlstogrz.am) plt.plot(hist2);
new — histl = cv2.calcHist([gImgUint], ’
[0], None, [256], [0,255])
5598 55/

Example

Hist. of original image

12000
10000
8000
6000
4000
2000
0
0 50 100 150 200 250
Hist. of equalized image
Equalized 12000
100 10000
2003 8000
200 6000
400 4000
500 2000
1000
0

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Histogram Equalization

@ In fact, histogram equalization can be performed using OpenCV function. To do so, you
need to first import cv2

import cv2
@ Then use equalizeHist() method of the cv2 module.
Syntax
equalizeHist (source)

Parameters:

@ source: input image array

@ Return value: Equalized image

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Assume Google Drive has been mounted & the path has been added for interpreter to search

Import all the required libraries
import cv2; import numpy as np
import matplotlib.image as mpimg; import matplotlib.pyplot as plt

Equalized

img = mpimg.imread('snorlax-low-contrast.png') # Read the image

Prepare subplots

fig = plt.figure(figsize=(12,9))
fig.set_figwidth(6); fig.tight_layout()
fig.subplots_adjust(wspace=0.2, hspace=0.2)

Convert pixel values from [0,1] to [0,255]

Histogram of equalized image

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
grayImgUint = grayImg+*255 12000
grayImgUint = grayImgUint.astype(np.uint8) 10000
8000
Perform histogram equalization
equalizedImg = cv2.equalizeHist(grayImgUint)
axl = fig.add_subplot(2, 1, 1); axl.title.set_text('Equalized') **
plt.imshow(equalizedImg, cmap='gray', vmin=0, vmax=255) &0

Produce histogram ¢ o wooome W B0
hist = cv2.calcHist([equalizedImg], [0], None, [256], [0,255])

ax2 = fig.add_subplot(2, 1, 2)

ax2.title.set_text('Histogram of equalized image'); plt.plot(hist)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Local Operations

@ Recall, local operations refer to those the output value at a specific coordinate is
dependent on the input values in the neighbourhood of that same coordinate.

@ Some of the most common neighbourhoolds are 4-connected neighbourood and the
8-connected neighbourhood.

Rectangular sampling
4-connected

Rectangular sampling
8-connected

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Examples

@ Image smoothing: It removes noise and softens edges and corners of the image. It is also
called blurring.

o Image edge detection: It detects the boundaries (edges) of objects, or regions within an
image.

@ Image sharpening: It removes blur, enhances details, and dehazes.

Image Convolution
Image convolution is defined as

O(x,y) = Z Z K(m,n)lI(x —m,y — n)

m=—00 n=—00

where | is the input image, K is the image kernel.
@ Assume the origin (i.e., (0,0)) of | is top-left corner, while
e the origin (i.e., (0,0)) of K is the center of the kernel.

If the image kernel is 3x3, then

1 1

O(x,y) = Z Z K(m,n)l(x — m,y — n)

m=—1n=-1

Image kernel is also called image filter or image mask.

61/98 2/
Example Input image | Image kernel K Very Tedious :(Any Intuitive Way? YES!!!
1013|126 -1]0]1 & il3z]a
0| ¢
4 13[5|18]0 -110]1 o Steps R oftlolz]| [&]]
8 [7]/9]6]5 1]0]1 o . “alel EENSE |Em
1. Inverse the kernel, i.e., flipping the kernel in both oftfo]2
11 horizontal and vertical directions about the center .
OCy)= > > K(mn)l(x—m,y—n) of kernel. 1 ; : z : an
mo aAJ0[1 1]0]-1 1]0]-1 e e I EY E EN 3
0,1) = 3 (K(m,~1)I(1 — m,1 = (1)) + K(m, 0)/(1 — m,1— 0) + K(m, 1)I(1 — m,1 - 1)) 1101 1]0]-1 1]0]-1 e
s Tjo[1] [T]o]1] [1[0]1 T
=K(—1,-1)/(2,2) + K(—1,0)/(2,1) + K(—1,1)I(2,0)+ (Left) Original kernel, (Middle) Flipped ;Q; ': ; ofilola|_[e]a]
K(0,~1)I(1,2) + K(0,0)I(1, 1) + K(0, 1)I(1,0)+ horizontally, (Right) Flipped vertically "Rl EEEE EHE
K(1,-1)I(0,2) + K(1,0)/(0, 1) + K(1,1)/(0,0) 2. Slide over the inversed kernel centered at interested - __
=(=1)(9) + (=1)(5) + (=1)(3) + (0)(7) + (0)(3) + (0)(1) + (1)(8) + (1)(4) + (1)(10) point. REOE ; : i : EE
=-9-5-34+8+44+10=5 3. Multiply inversed kernel data with the overlapped & 'z ; Z s (2]e] [2]s]
Can you calculate all the remaining output image values? area. ‘ D_l_ii -
- 4. Sum and accumulate the output. D Comvolutional ~ 2D-gri 2D Feature mep
. n kernellfilter Image patch
Step 2 to Step 4
/98 /98

Image Convolution Again

(1x3)+(0x0)+(1x1)+
(2x2)+(0x6) +(2x2) +

Problem

@ When computing an output pixel at the boundary of an image, a portion of the
convolution is usually off the edge of the image. How to deal with this?
@ Solutions:
1. Just ignore those boundary pixels. :P
2. Do zero padding (i.e., add a border of pixels all with value zero around the edges of the input

(1x2)+(0x4)+(1x1) =-3 images.)
0 0 0 0O O O O
0j10(1|13|2]|6]|0
0|4 (3|5[8]0/]0
0| 8 |7]9]6|5|0
oo 00 000 0O
Destination pixel . . .
e 3. Replicating boundary pixels
10 10 1 3 2 6 6
1010113 |2|6]|6
4 14 (3]5/8[0]|0
8 8 |7]19|6|5]|5
8 8 7 9 6 5 5
o5/98 a5/
Image Convolution
. @ To do image convolution, you need to first import cv2
@ Solutions: _
)) import cv2
4. Reflecting boundary pixels @ Then use filter2D() method of the cv2 module.
10 10 1 3 2 6 6 Svnt
10[10]1]3[2]6]6 yntax
4 4 31518]010 cv2.filter2D(src, ddepth, kernel, dst, anchor, delta, borderType=cv2.BORDER_DEFAULT)
8 8 |7]9]6]5]5 Parameters:
8 8 7 9 6 5 5 o
. i . @ src: input image that you want to convolve
5. |\/||rror|ng boundary p|xe|s @ ddepth: desired depth of the destination image. If ddepth=-1, the output image will have the same depth as the src
@ kernel: convolution kernel, a single-channel floating point matrix; if you want to apply different kernels to different channels, split
3 4 3 5 8 0 8 the image into separate color planes using split and process them individually.
1 10 1 3 2 6 2 @ dst: output image of the same size and the same number of channels as src.
@ anchor: anchor of the kernel that indicates the relative position of a filtered point within the kernel; the anchor should lie within the
h hor of the kernel th d he rel f a filtered hin the kernel; th hor should | hin th
3 4 3 5 8 0 8 kernel; default value (-1,-1) means that the anchor is at the kernel center.
@ delta: optional value added to the filtered pixels before storing them in dst.
7 8 7 9 6 5 6 @ borderType: pixel extrapolation method
3 4 3 58 0 8 @ cv2.BORDER_CONSTANT: iiiiii|abcdefghliiiiii with some specified i
@ cv2.BORDER_REPLICATE: aaaaaalabcdefgh|hhhhhh
@ cv2.BORDER_REFLECT: fedcba|abcdefgh|hgfedc
@ cv2.BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
@ cv2.BORDER_DEFAULT: Same as BORDER_REFLECT_101
@ Return value: filtered image.)
o7 /58 /58

Image Convolution

Note

filter2D does not mirror the kernel for you. You will need to flip the kernel before applying
cv2 filter2D.

Assume Google Drive has been mounted & the path has been added for interpreter to search

Import all the required libraries
import cv2; import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

Prepare a kernel (a sharpening kernel here)
kernel_3x3 = np.array([[0,-1,0],

[-1,5,-1],

[0,-1,01 1)

Read the image

img = mpinmg.imread('snorlax-sleep.png') for i in range(5): # Perform filtering 5 times

grayImg = cv2.filter2D(grayImg, -1,

Convert the color image to gray and show it kernel_3x3)

grayImg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
plt.figure(); plt.imshow(grayImg, cmap='gray',
vmin=0, vmax=1)

Show the resulting image
plt.figure(); plt.imshow(grayImg, cmap="
vmin=0, vmax=1)

grayu s

Rm 3553, desmond®@ust.hk COMP 2211 (Spring 2022) 69 /98

Before and After

100
200
300
400
500
600

700

200 400 800 800 1000 1200 200 400 600

Input image

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Output image

1000

1200

70/98

Smoothing (Averaging/Blurring) Kernel

1/9 [1/9 [1/9
1/9 [1/9 | 1/9
1/9 [1/9 | 1/9

3x3 mask 5x5 mask 15x15 mask

@ Blurring an image can be done by averaging pixels
@ Analogous to integration, related to sum of pixel intensity values
Rm 3553, desmond®@ust.hk

COMP 2211 (Spring 2022) 71/98

Sharpening Kernel

07010 -1 -1 -1 -1 -1 -1
0]11]0 -1 8 -1 -119 -1
0(01]0 -1-1-1 -1 -1 -1

-.I;-»>j?

Detail (Edge)
[Color flipped for clarity]

Original image

@ Sharpening has the opposite effect of blurring

@ Analogous to differentiation, related to the difference of pixel intensity values

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

Sharpened image

72/98

Edge Kernel - Prewitt

-1{0]1
-1{0]1
-1{0]1

Kernel for detecting
vertical edges

(]

-1 -1 -1
0|00
1]1 |1

Kernel for detecting
horizontal edges

it
\

Edge Kernel - Sobel

-1{0|1
2102
-1{0|1

-1 -2 -1
0|00
1121

Kernel for detecting
vertical edges

T
MmN

Kernel for detecting
horizontal edges

\BA

\

Edge image (magnitude)

Edge image (vertical edges)

Edge image (horizontal edges)

Edge image (vertical edges)
| Gx|

Edge image (horizontal edges)
|Gyl

Edge image (magnitude)

|G|

G|

Pixels of the processed images are inverted (i.e. black to white, white to black) for making them more visible.

Rm 3553, desmond®@ust.hk

COMP 2211 (Spring 2022)

73/98

Pixels of the processed images are inverted (i.e. black to white, white to black) for making them more visible.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

74/98

Interesting Kernels
o

0|0
0|1
0|0

Original image

Original image

Rm 3553, desmond®@ust.hk

-
‘\
‘ 00
| 10
e | 0|0
=
b | Shifted identity

kernel

COMP 2211 (Spring 2022)

Convolve the
original image with
the kernel 5 times,
we still get back
the identical
image.

Resulting image

\

Convolve the
original image with
the kernel 5 times,
we get back an
image shifted by 5
pixels.

Resulting image

75/98

Image Convolutions

o Clearly, image convolution is powerful in finding the features of an image if we already
know the right kernel to use.

o Kernel design is an art and has been refined over the last few decades to do some pretty

amazing things with images. But the important question is, what if we don't know the
features we are looking for? Or what if we do know, but we don't know what kernel
should look like?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

76/98

Non-linear Filtering

@ Non-linear filters are typically more powerful than linear filters
e Suppression of spikes
o Edge preserving properties
o Examples:
o Median filter
e Morphological filters

Median Filter

@ The median filter is often used to remove noise from an image.
@ It preserves edges while removing noise. Also, no new gray value is introduced.

o Idea:
o Consider each pixel in the image in turn and looks at its nearby neighbors to decide whether
or not it is representative of its surroundings.
o It replaces the pixel with the median of those values.
e The median is calculated by first sorting all the pixel values from the surrounding
neighborhood into numerical order and then replacing the pixel being considered with the
middle pixel value.

@ Example:
123 | 125 | 126 | 130 | 140 . .
122 (122 [126 [127 [135 |° Neighborhood values: 124, 126, 127, 120, 150, 125, 115, 119, 123
118 | 120 | 150 | 125 | 134 |e Sort the values: 115, 119, 120, 123, 124, 125, 126, 127, 150
119 | 115 | 119 | 123 | 133 . .]
111 | 116 | 110 | 120 | 130 |® Pick the median value: 124
/98 78/98
Median Filter # Assume Google Drive has been mounted & the path has been added for interpreter to search
° To perform median filtering, you need to first import cv2 # Tmport all the required libraries
import cv2 : Lo
. import cv2; import numpy as np
@ Then use medianBlur() method of the cv2 module. import matplotlib.image as mpimg
import matplotlib.pyplot as plt
Syntax
cv2.medianBlur(src, kernelSize) # Read the image
grayImg = mpimg.imread('snorlax-noisy-result.png')
Parameters: # Convert the pixel values from [0,1] to [0,255]
@ src: input image that you want to process grayimgU:i.nt i grayimg*?SS (int8)
@ kernelSize: The size of the kernel gray IflgU:mt N gray.mgUlnt.astype 1.1p.u1nt
plt.figure(); plt.imshow(grayImgUint, cmap='gray',
@ Return value: filtered image. vmin=0, vmax=255)
median # Perform median filtering
resultImg = cv2.medianBlur(grayImgUint, 5)
9 1 12 13, 15 18 19 # Show the resulting image
’ ' ’ ! ' ! plt.figure();
3 below 3 above plt.imshow(resultImg, cmap="gray", vmin=0, vmax=255)
) 0,9

Part Il

Reference Materials

Rm 3553, desmond®@ust.hk

Morphological Filter

@ Morphological filters are a set of image processing operations where the shapes of the
image's object are manipulated.

@ Similar to convolutional kernels, morphological operations utilize a structuring element to
transform each pixel of an image to a value based on its neighbors' value.

@ An example of structuring element:

import numpy as np

structuring_element = np.array([[0,1,0], 10
[1,1,1], 15
[0,1,0] 1, np.uint8)

plt.imshow(structuring_element, cmap='gray'); 20

25
-05 00 05 10 15 20 25

CoMP 2211 (Spring 2022 o1/ 2/
Morphological Filter Examples
. a. Original b. Erosion c. Dilation
@ To demonstrate how morphological filter work, let us create two adjacent circles with
random noise on its background.
from skimage.draw import disk
import numpy as np @ Erosion
circle_image = np.zeros((25, 40)) o Dilation
circle_image[disk((12, 12), 8)] =1 ° Opening d. Opening e. Closing
circle_image[disk((12, 28), 8)] =1 Closi
for x in range(20): @ Llosing
circle_image [np.random.randint (25),
np.random.randint (40)] = 1
plt.imshow(circle_image, cmap='gray');
/o6 Rim 3553 dsmondQust e COMP 2211 Spring 2022 o4/

Erosion Filter

@ Erosion is used for shrinking of element in input image by using the structuring element.

@ The pixel values are retained only when the structuring element is completely contained
inside input image. Otherwise, it gets deleted or eroded.

EEEEEEEEE EEEEEEEEE
EEEEEEEEE EEEEEEEEE

| |] HEEEE EEEEEEEEE

||] BEEN Ercsion HEE EEEEN

| |] EE — EER [| |]|

— Hn [| |] HEE
Structuring HE EEEEEEEEE
element HENEEEEEN ENEEEEEEN
EEEEEEEN EEEEEEEEE

Input Output

Erosion Filter

@ To perform erosion, you need to first import cv2

import cv2

@ Then use erode() method of the cv2 module.

Syntax

cv2.erode(src, kernel, dst, anchor, iterations, borderType, borderValue)

Parameters:

src: input image that you want to enrode

kernel: A structuring element used for erosion

dst: Output image

anchor: Integer representing anchor point and it's default value Point is (-1,-1) which means that the anchor is at
the kernel center.

@ borderType: cv2.BORDER_.CONSTANT, cv2.BORDER_REFLECT, etc.

@ iterations: Number of times erosion is applied.
°
°

borderValue: It is border value in case of a constant border.
Return value: filtered image.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 85/98 Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 86 /98
Dilation Filter

import cv2
import matplotlib.pyplot as plt

Show circle_image

plt.figure(); plt.imshow(circle_image, cmap='gray')

Show structuring element

plt.figure(); plt.imshow(structuring_element, cmap='gray');
Perform erosion filter

eroded_img = cv2.erode(circle_image, structuring_element)
Show the resulting image

plt.figure(); plt.imshow(eroded_img, cmap='gray')

00 05 10 15 20 25

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

87,/98

o Dilation is used for expanding of element in input image by using the structuring element.

@ The pixel values are “on” only when the structuring element has overlapped with the
input image. Otherwise, the pixel values are “off".

EEEEEEEEE AEEEEEEN
[| HEEN
[|]|
| | |
[| | |
: | [|
Structuring] []
element HEEEEEEREN [| | ||
EEEEEEEEE EEEEEEEEN

Input Output

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 88/98

Dilation Filter

@ To perform dilation, you need to first import cv2

import cv2

@ Then use dilate() method of the cv2 module.

Syntax

cv2.dilate(src, kernel, dst, anchor, iterations, borderType, borderValue)

Parameters:

src: input image that you want to dilate

kernel: A structuring element used for dilation

dst: Output image

anchor: Integer representing anchor point and it's default value Point is (-1,-1) which means that the anchor is at
the kernel center.

@ borderType: cv2.BORDER_CONSTANT, cv2.BORDER_REFLECT, etc.

@ iterations: Number of times dilation is applied.
°
°

borderValue: It is border value in case of a constant border.
Return value: filtered image.

import cv2
import matplotlib.pyplot as plt

Show circle_image

plt.figure(); plt.imshow(circle_image, cmap='gray')

Show structuring element

plt.figure(); plt.imshow(structuring_element, cmap='gray');
Perform erosion filter

dilated_img = cv2.dilate(circle_image, structuring_element)
Show the resulting image

plt.figure(); plt.imshow(dilated_img, cmap='gray')

s9//98 0,98
Opening Filter Opening Filter
@ To perform opening, you need to first import cv2
@ Opening filter removed small objects while also maintaining the original shape of the import cv2
object. @ Then use morphologyEx() method of the cv2 module.
@ Opening is done by applying the erosion first, and then applying dilation.
Syntax
MorphOIOglcal opening cv2.morphologyEx(src, op, kernel, dst=None, anchor=None,
I iterations=None, borderType=None, borderValue=None)
L[]]] EEEEEEEEE ENEEEEEEN p ters:
| [EEEEEEEEE [|| arameters:
@ src: input image that you want to process
@ op: Operations (cv2.MORPH_ERODE, cv2.MORPH_DILATE, cv2.MORPH_OPEN, cv2.MORPH_CLOSE)
@ kernel: A structuring element used for dilation
Structurin @ dst: Output image
| 9 @ anchor: Integer representing anchor point and it's default value Point is (-1,-1) which means that the anchor is at
element the kernel center.
@ iterations: Number of times dilation is applied (e.g. iterations = 2, erodex2, dilatex2).
@ borderType: cv2.BORDER_CONSTANT, cv2.BORDER_REFLECT, etc.
@ borderValue: It is border value in case of a constant border.
@ Return value: filtered image. J
Rim 3553, desmondQust i COMP 2211 (spring 2022 o1/98 2 /98

<matplotlib.image.AxesInage at @x7f

import cv2
import matplotlib.pyplot as plt

img = plt.imread('input-open.png')

Show input image

plt.figure(); plt.imshow(img, cmap='gray')

Show structuring element

plt.figure();

plt.imshow(structuring_element, cmap='gray');

Perform opening filter

opened_img = cv2.morphologyEx(img, cv2.MORPH_OPEN,
structuring_element,
iterations=4)

25
=05 00 05 10

Show the resulting image
plt.figure();
plt.imshow(opened_img, cmap='gray')

Closing Filter

@ Closing filter removes small holes while also maintaining the original shape of the object.

@ Closing is done by applying the dilation first, and then applying erosion.

Morphological closing

Structuring
element

93/98 Rm 3553, desmondQust.hk COMPI22111(Spring|2022) 94/98
- - <matplotlib.image.AxesImage at @x7f7f71aSbb!
C|osmg Filter import cv2 °F
. . . import matplotlib. lot as plt » N
@ To perform closing, you need to first import cv2 P P PyP P

import cv2

@ Then use morphologyEx() method of the cv2 module.

Syntax

cv2.morphologyEx(src, op, kernel, dst=None, anchor=None,
iterations=None, borderType=None, borderValue=None)

Parameters:

src: input image that you want to process

op: Operations (cv2.MORPH_ERODE, cv2.MORPH_DILATE, cv2.MORPH_OPEN, cv2.MORPH_CLOSE)

kernel: A structuring element used for dilation

dst: Output image

anchor: Integer representing anchor point and it's default value Point is (-1,-1) which means that the anchor is at
the kernel center.

@ iterations: Number of times dilation is applied (e.g. iterations = 2, erodex 2, dilatex2).

@ borderType: cv2.BORDER_CONSTANT, cv2.BORDER_REFLECT, etc.
°
°

borderValue: It is border value in case of a constant border.
Return value: filtered image.

Rm 3553, desmond®@ust.hk COMP 2211 (Spring 2022) 95 /98

img = plt.imread('input-close.png')

Show input image
plt.figure(); plt.imshow(img, cmap='gray')

Show structuring element

plt.figure();

plt.imshow(structuring_element, cmap='gray',

vmin=0, vmax=1);

Perform closing filter heied il

closed_img = cv2.morphologyEx(img, cv2.MORPH_CLOSE,
structuring_element,
iterations=4)

Show the resulting image

plt.figure();

plt.imshow(closed_img, cmap='gray')

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 96 /98

Useful Links

imread(): https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
imshow(): https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
imsave(): https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imsave.html
cvtColor(): https://docs.opencv.org/3.4/df/d9d/tutorial_py_colorspaces.html

warpAffine(), getRotationMatrix2D(), resize():
https://docs.opencv.org/3.4/da/d6e/tutorial_py_geometric_transformations.html

copyMakeBorder(): https://docs.opencv.org/3.4/dc/da3/tutorial_copyMakeBorder.html

calcHist(): https://docs.opencv.org/3.4/dd/d0d/tutorial_py_2d_histogram.html

convertScaleAbs():
https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga3460e9c9f37b563ab9dd550c4d8c4e7d

threshold(): https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
equalizeHist(): https://docs.opencv.org/3.4/d5/daf/tutorial_py_histogram_equalization.html
filter2D(), medianBlur(): https://docs.opencv.org/3.4/d4/d13/tutorial_py_filtering.html

erode(), dilate(), morphologyEx(),
https://docs.opencv.org/3.4/d9/d61/tutorial_py_morphological_ops.html

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 97 /98

That's alll
Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022)

98/98

