
COMP 2211 Exploring Artificial Intelligence

Artificial Neural Network - Multilayer Perceptron

Dr. Desmond Tsoi
Department of Computer Science & Engineering

The Hong Kong University of Science and Technology, Hong Kong SAR, China

Perceptron

Recall the perceptron is a simple biological neuron model in an artificial neural network.

It has a couple of limitations:

1. Can only represent a limited set of functions.
2. Can only distinguish (by the value of its output) the sets of inputs that are linearly separable

in the inputs.

One of the simplest examples of non-separable sets is logical function XOR

How to remedy these limitations?

The output of one perceptron can be connected to the input of
other perceptron(s). This makes it possible to extend the
computational possibilities of a single perceptron.

⇒ Multi-layer Perception

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 2 / 64

Multi-Layer Perceptron Neural Network
Multi-layer perceptron (MLP) neural network is a type of feed-forward neural network.
(Feed-forward here means nodes in this network do not form a cycle.)
It consists of three types of layers:

Input layer (also called layer i)
Hidden layer (also called layer j)
Output layer (also called layer k)

x1, x2, . . ., xn are the inputs∑
is summation

wab is the weight connecting
node a to node b

f is an activation function

θ is a bias

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 3 / 64

Questions
How to initialize the weights and biases?
Answer: Initialize them to some small random values.

How to perform training?
Answer:
1. Let the network calculate the output with the given inputs (forward propagation)
2. Calculate the error (i.e. the difference between the calculated outputs and the target outputs)
3. Update the weights and biases between the hidden and output layer (backward propagation)
4. Update the weights and biases between the input and hidden layer (backward propagation)
5. Go back to step 1

When to stop training?
Answer:

After a fixed number of iterations through the loop.
Once the training error falls below some threshold.
Stop at a minimum of the error on the validation set.

Training can be very slow in networks with multiple hidden layers!

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 4 / 64

How to update the weights and biases?

The formula for updating weights and biases are derived by minimizing the error:

E =
1

2

∑
all k

(Ok − Tk)
2

using gradient descent.

δk = (Ok − Tk)Ok(1− Ok)

δj = Oj(1− Oj)
∑
k∈K

δkwjk

wjk ← wjk − ηδkOj

wij ← wij − ηδjOi

θj ← θj − ηδj

θk ← θk − ηδk

where Ok is the computed output of node in layer k, Tk is the target output of node in
layer k, η is the learning rate.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 5 / 64

Intuitive Idea of Gradient Descent

Consider the function

f (x) =
x2cos(x)− x

10

As we can see from the left, this function has many
local minima.

If we choose x0 = 6 and η = 0.2, for example,
gradient descent moves as shown in the graph
below.

The first point is x0, and lines connect each point
to the next one in the sequence. After only 10
steps, we converged to the minimum near x=4.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 6 / 64

Intuitive Idea of Gradient Descent (Cont’d)

Consider the function

f (x) =
x2cos(x)− x

10

If we start at x0 = 7 with η = 0.2, we descend into
a completely different local minimum.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 7 / 64

Intuitive Idea of Gradient Descent (Cont’d)
To minimize the function E = 1

2

∑
all k(Ok − Tk)

2, we can follow the negative of the
gradient (slope in 2D), and thus go in the direction of steepest descent. This is gradient
descent.
Formally, if we start at a point x0 (x0 can be a weight or a bias) and move a positive
distance η in the direction of the negative gradient, then our new and improved x1 (x1
can be a weight or a bias) will look like this:

x1 = x0 − η▽f (x0)

More generally, we can write a formula for tuning xn (xn can be a weight or a bias) into
xn+1 (xn+1 can be a weight or a bias):

xn+1 = xn − η▽f (xn)

Starting from an initial guess x0 (x0 can be a weight or a bias), we keep improving little
by little until we find a local minimum.

This process may take thousands of iterations, so we typically implement gradient descent
with a computer.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 8 / 64

Gradient Descent

Question

Why is gradient descent used rather than directly to find a closed-form mathematics solution?

Answers:

For most non-linear regression problems, there is no closed-form solution.

Even for those with a closed-form solution, gradient descent is computationally cheaper
(faster) to find the solution.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 9 / 64

Activation Function Again
For multi-layer perceptron, the Sigmoid function is used as an activation function for
neurons since it is continuous and differentiable (i.e. can be used to find the weights
updating rules easily).

σ(x) =
1

1 + e−x

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 10 / 64

Learning Steps
1. Run the network forward with your input data to get the network output.

2. For each output node, compute

δk = (Ok − Tk)Ok(1− Ok)

3. For each hidden node, compute

δj = Oj(1− Oj)
∑
k∈K

δkwjk

4. Update the weights and biases as follows:

wjk ← wjk − ηδkOj

wij ← wij − ηδjOi

θj ← θj − ηδj

θk ← θk − ηδk

where η denotes the learning rate, typically, η is a value between 0 and 1.
Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 11 / 64

Multi-Layer Perceptron Neural Network Example

Suppose that we will work on a problem of XOR logical operation. The truth table of logical XOR
is as follows.

x1 x2 T
0 0 0
0 1 1
1 0 1
1 1 0

Assume the weights are randomly generated,
say w1 = −0.65, w2 = 0.64, w3 = 1.11,
w4 = 0.84, w5 = 0.86, and w6 = −1.38. Also,
assume the biases are randomly generated, say
θ1 = 0, θ2 = 0, amd θ3 = 0. Finally, assume
η = 0.5.

Activation function is f (x) = 1
1+e−x

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 12 / 64

MLP Neural Network Example - Round 1 - Step 1, Forward Propagation

Inputs: x1 = 0, x2 = 0

Actual Output: T = 0

Weights: w1 = −0.65, w2 = 0.64, w3 = 1.11,
w4 = 0.84, w5 = 0.86, and w6 = −1.38
Bias: θ1 = 0, θ2 = 0, θ3 = 0

Calculations:∑
1 = x1 · w1 + x2 · w2 = 0 · (−0.65) + 0 · (0.64) = 0

Output (Oj1): f (
∑

1 +θ1) = f(0+0) = 0.5∑
2 = x1 · w3 + x2 · w4 = 0 · 1.11 + 0 · 0.84 = 0

Output (Oj2): f (
∑

2 +θ2) = f(0+0) = 0.5∑
3 = Oj1 · w5 + Oj2 · w6 =

0.5 · (0.86) + 0.5 · (−1.38) = −0.26
Output (Ok): f (

∑
3 +θ3) = f(-0.26+0) = 0.435364

η = 0.5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 13 / 64

MLP Neural Network Example - Round 1 - Step 1, Backward Propagation

Calculations:
Output (Oj1): f (

∑
1 +θ1) = f(0+0) = 0.5

Output (Oj2): f (
∑

2 +θ2) = f(0+0) = 0.5
Output (Ok): f (

∑
3 +θ3) = f(0.26+0) = 0.435364

δk = (Ok - Tk)Ok (1- Ok) = (0.435364 -
0)(0.435364)(1-0.435364) = 0.107022
New w5 = Old w5 - ηδkOj1 = 0.86 - (0.5)(0.107022)(0.5) =
0.833245
New w6 = Old w6 - ηδkOj2 = -1.38 - (0.5)(0.107022)(0.5) =
-1.406756
New θ3 = Old θ3 - ηδk = 0 - (0.5)(0.107022) = -0.053511
δj1 = Oj1(1-Oj1)

∑
k∈K δkwjk = 0.5(1-0.5)(0.107022)(0.86) =

0.023010
δj2 = Oj2(1-Oj2)

∑
k∈K δkwjk = 0.5(1-0.5)(0.107022)(-1.38) =

-0.036923
New w1 = Old w1 - ηδj1x1 = -0.65 - 0.5(0.023010)(0) = -0.65
New w2 = Old w2 - ηδj1x2 = 0.64 - 0.5(0.023010)(0) = 0.64
New w3 = Old w3 - ηδj2x1 = 1.11 - 0.5(-0.036923)(0) = 1.11
New w4 = Old w4 - ηδj2x2 = 0.84 - 0.5(-0.036923)(0) = 0.84
New θ1 = Old θ1 - ηδj1 = 0 - (0.5)(0.023010) = -0.011505
New θ2 = Old θ2 - ηδj2 = 0 - (0.5)(-0.036923) = 0.018462

η = 0.5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 14 / 64

MLP Neural Network Example - Round 1 - Step 2, Forward Propagation

Inputs: x1 = 0, x2 = 1

Actual Output: T = 1

Weights: w1 = −0.65, w2 = 0.64, w3 = 1.11, w4 = 0.84,
w5 = 0.833245, and w6 = −1.406756

Bias: θ1 = −0.011505, θ2 = 0.018462, θ3 = −0.053511

Calculations:∑
1 = x1 · w1 + x2 · w2 = 0 · (−0.65) + 1 · (0.64) = 0.64

Output (Oj1): f (
∑

1 +θ1) = f(0.64+(-0.011505)) =
0.652148∑

2 = x1 · w3 + x2 · w4 = 0 · 1.11 + 1 · 0.84 = 0.84
Output (Oj2): f (

∑
2 +θ2) = f(0.84+(0.018462)) =

0.702339∑
3 = Oj1 · w5 + Oj2 · w6 =

0.652148 · 0.833245 + 0.702339 · (−1.406756) =
-0.444621
Output (Ok): f (

∑
3 +θ3) = f(-0.444621-0.053511) =

0.377980

η = 0.5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 15 / 64

MLP Neural Network Example - Round 1 - Step 2, Backward Propagation
Calculations:

Output (Oj1): f (
∑

1 +θ1) = f(0.64+(-0.011505)) = 0.652148
Output (Oj2): f (

∑
2 +θ2) = f(0.84+(0.018462)) = 0.702339

Output (Ok): f (
∑

3 +θ3) = f(-0.444621-0.053511) = 0.377980
δk = (Ok - Tk)Ok (1- Ok) = (0.377980 -
1)(0.377980)(1-0.377980) = -0.146244
New w5 = Old w5 - ηδkOj1 = 0.833245 -
(0.5)(-0.146244)(0.652148) = 0.880931
New w6 = Old w6 - ηδkOj2 = -1.406756 -
(0.5)(-0.146244)(0.702339) = -1.355400
New θ3 = Old θ3 - ηδk = -0.053511 - (0.5)(-0.146244) = 0.019611
δj1 = Oj1(1-Oj1)

∑
k∈K δkwjk =

0.652148(1-0.652148)(-0.146244)(0.833245) = -0.027463
δj2 = Oj2(1-Oj2)

∑
k∈K δkwjk =

0.702339(1-0.702339)(-0.146244)(-1.406756) = 0.043010
New w1 = Old w1 - ηδj1x1 = -0.65 - 0.5(-0.027463)(0) = -0.65
New w2 = Old w2 - ηδj1x2 = 0.64 - 0.5(-0.027463)(1) = 0.653732
New w3 = Old w3 - ηδj2x1 = 1.11 - 0.5(0.043010)(0) = 1.11
New w4 = Old w4 - ηδj2x2 = 0.84 - 0.5(0.043010)(1) = 0.818495
New θ1 = Old θ1 - ηδj1 = -0.011505 - (0.5)(-0.027463) =
0.002227
New θ2 = Old θ2 - ηδj2 = 0.018462 - (0.5)(0.043010) = -0.003043

η = 0.5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 16 / 64

MLP Neural Network Example - Round 10000 - Step 4, Backward
Propagation

Calculations:

New w5 = 9.533777
New w6 = -9.290053
New w1 = -6.251654
New w2 = 6.229623
New w3 = -5.717901
New w4 = 5.967069
New θ3 = 4.417774
New θ1 = -3.406953
New θ2 = 2.851217

Round 10001, Forward Propagation

Input: (x1 = 0, x2 = 0), Output: y = 0.016973
Input: (x1 = 0, x2 = 1), Output: y = 0.984139
Input: (x1 = 1, x2 = 0), Output: y = 0.980513
Input: (x1 = 1, x2 = 1), Output: y = 0.015179

η = 0.5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 17 / 64

Multi-layer Perceptron Implementation from Scratch I

import numpy as np # Import NumPy

class MultiLayerPerceptron:
def __init__(self):

""" Multi-layer perceptron initialization """
self.wij = np.array([# Weights between input and hidden layer

[-0.65, 0.64], # w1, w2
[1.11, 0.84] # w3, w4

])
self.wjk = np.array([# Weights between hidden and output layer

[0.86], # w5
[-1.38] # w6

])
self.tj = np.array([# Biases of nodes in the hidden layer

[0.0], # Theta 1
[0.0] # Theta 2

])
self.tk = np.array([[0.0]]) # Bias of node in the output layer, Theta 3
self.learning_rate = 0.5 # Eta
self.max_round = 10000 # Number of rounds

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 18 / 64

Multi-layer Perceptron Implementation from Scratch II

def sigmoid(self, z, sig_cal=False):
""" Sigmoid function and the calculation of z * (1-z) """
if sig_cal: return 1 / (1 + np.exp(-z)) # If sig cal is True, return sigmoid
return z * (1-z) # If sig cal is False, return z * (1-z)

def forward(self, x, predict=False):
""" Forward propagation """
Get the training example as a column vector
sample = x.reshape(len(x), 1) # Shape (2,1)
Compute the hidden node outputs
yj = self.sigmoid(self.wij.dot(sample) + self.tj, sig_cal=True) # Shape (2,1)
Compute the output of node in the output layer
yk = self.sigmoid(self.wjk.transpose().dot(yj) + self.tk, sig_cal=True) # Shape (1,1)
If predict is True, return the output of node in the layer node
if predict: return yk
Otherwise, return (data sample, hidden node outputs, predicted output)
return (sample, yj, yk)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 19 / 64

Multi-layer Perceptron Implementation from Scratch III

def backpropagation(self, values, tk):
Oi = values[0] # Input sample
Oj = values[1] # Hidden node outputs
Ok = values[2] # Predicted output
""" back propagation """
deltak = (Ok-tk)Ok(1-Ok)
deltaK = np.multiply((Ok - tk), self.sigmoid(Ok)) # Shape (1,1)
deltaj = Oj(1-Oj)(deltak)(Wjk)
deltaJ = np.multiply(self.sigmoid(Oj), deltaK[0][0] * self.wjk) # Shape (2,1)
wjk = wjk - eta(deltak)(Oj)
self.wjk -= self.learning_rate * deltaK[0][0] * Oj # Shape (2,1)
wij = wij - eta(deltaj)(Oi)
s = self.learning_rate * deltaJ.dot(Oi.T) # Shape (2,2)
Alternative for the above: s = self.learning rate * deltaJ * Oi.T
self.wij -= s
thetaj = thetaj - eta(deltaj)
self.tj -= self.learning_rate * deltaJ # Shape (2,1)
thetak = thetak - eta(deltak)
self.tk -= self.learning_rate * deltaK # Shape (1,1)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 20 / 64

Multi-layer Perceptron Implementation from Scratch IV

def train(self, X, T):
""" Training """
for i in range(self.max_round): # Train max round number of rounds

for j in range(m): # Use all the samples in the data set
print(f'Iteration: {i+1} and {j+1}')
values = self.forward(X[j]) # Forward propagation
self.backpropagation(values, T[j]) # Back propagation

def print(self):
print(f'wij: {self.wij}')
print(f'wjk: {self.wjk}')
print(f'tj: {self.tj}')
print(f'tk: {self.tk}')

m = 4 # Number of training samples

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 21 / 64

Multi-layer Perceptron Implementation from Scratch V

X = np.array([# Input data
[0, 0],
[0, 1],
[1, 0],
[1, 1]

])

T = np.array([# Target values
[0],
[1],
[1],
[0]

])

mlp = MultiLayerPerceptron() # Create an object
mlp.train(X, T) # Call train function
mlp.print() # Print all the parameter values
for k in range(m): # Testing

Ok = mlp.forward(X[k],True)
print(f'y{k}: {Ok}')

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 22 / 64

Handwritten Digits Recognition using MLP

We will build a MLP Artificial Neural Network to recognize/classify handwritten digits.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 23 / 64

Terminologies
Training data

The data our model learn from

Testing data
The data is kept secret from the model until after it has been trained. Testing data is used
to evaluate our model.

Loss function
A function used to quantify how accurate a model’s predictions were.

Optimization algorithm
It controls exactly how the weights are adjusted during training.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 24 / 64

Dataset
We use the Modified National Institute of Standards and Technology (MNIST) dataset.
This dataset contains two sets of samples:

Training data: 60000 28 pixel ×28 pixel images of handwritten digits from 0 to 9.
Testing data: 10000 28 pixel × 28 pixel images.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 25 / 64

Procedures
1. Import the required libraries and define a global variable

2. Load the data

3. Explore the data

4. Build the model

5. Compile the model

6. Train the model

7. Evaluate the model accuracy

8. Save the model

9. Use the model

10. Plotting the confusion matrix

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 26 / 64

1. Import the Required Libraries and Define a Global Variable
import numpy as np # Import numpy library
import matplotlib.pyplot as plt # Import matplot library
import seaborn as sn # Import seaborn library
import pandas as pd # Import pandas library
import math # Import math library
import datetime # Import datetime library
from keras.datasets import mnist # Import MNIST dataset
from keras.models import Sequential # Import Sequential class
from keras.layers import Dense, Flatten # Import Dense, Flatten class
from keras import regularizers # Import regularizers
from tensorflow.keras.optimizers import Adam # Import Adam optimizer
Import spare categorical crossentroy loss
from keras.metrics import sparse_categorical_crossentropy
from keras.callbacks import TensorBoard # Import TensorBoard class
from keras.models import load_model # Import load model method
from tensorflow.keras.utils import plot_model # Import plot model method
from tensorflow.math import confusion_matrix # Import confusion matrix method
from tensorflow.keras import activations # Import activations module
epochs = 1 # Number of epochs to train the model

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 27 / 64

2. Load the Data

x train is a NumPy array of grayscale image data with shapes (60000, 28, 28)
y train is a NumPy array of digit labels (in range 0-9) with shape (60000,)
x test is a NumPy array of grayscale image data with shapes (10000, 28, 28)
y test is a NumPy array of digit labels (in range 0-9) with shape (10000,)
(x_train, y_train), (x_test, y_test) = mnist.load_data()

Print the data shape
print('x_train:', x_train.shape)
print('y_train:', y_train.shape)
print('x_test:', x_test.shape)
print('y_test:', y_test.shape)

x_train: (60000, 28, 28)

y_train: (60000,)

x_test: (10000, 28, 28)

y_test: (10000,)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 28 / 64

3. Explore the Data
Show the pixel values (from 0 255) of
the first image
pd.DataFrame(x_train[0]) # Show the image in binary form

plt.imshow(x_train[0], cmap=plt.cm.binary)
plt.show()

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 29 / 64

numbers_to_display = 25 # Display 25 images
Compute number of images per row
num_cells = math.ceil(math.sqrt(numbers_to_display))
plt.figure(figsize=(10,10)) # Each image is in 10x10 inches
Show all the images
for i in range(numbers_to_display):

number of rows, number of columns, index (start from 1)
plt.subplot(num_cells, num_cells, i+1)
plt.xticks([]) # Remove all xticks
plt.yticks([]) # Remove all yticks
plt.grid(False) # No grid lines
Display data as a binary image
plt.imshow(x_train[i], cmap=plt.cm.binary)
Show training image labels
plt.xlabel(y_train[i])

plt.show() # Show the figure

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 30 / 64

4. Build the Model

Instead of building the model from scratch, we will use the software library, Keras, instead.

Layers

Layer 1: Flatten layer that will flatten 2D image into 1D
Layer 2: Hidden Dense layer 1 with 128 neurons and ReLU activation
Layer 3: Hidden Dense layer 2 with 128 neurons and ReLU activation
Layer 4: Output Dense layer with 10 Softmax outputs. This layer represents the guess, i.e.,
the 0th output represents the probability that the input digit is 0, the 1st output represents a
probability that the input digit is 1, etc.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 31 / 64

model = Sequential() # Create a Sequential object
Input layer
Add a flatten layer to convert the image data to a single column
model.add(Flatten(input_shape=x_train.shape[1:]))
Hidden layer 1
Add a dense layer (fully-connected layer) and use ReLU activation function.
This layer uses L2 loss, computed as l2 * reduce sum(square(x)), where l2 is 0.002
model.add(Dense(units=128, activation='relu',

kernel_regularizer=regularizers.l2(0.002)
))
Hidden layer 2
Add a dense layer (fully-connected layer) and use ReLU activation function.
This layer uses L2 loss, computed as l2 * reduce sum(square(x)), where l2 is 0.002
model.add(Dense(units=128, activation=activations.relu,

kernel_regularizer=regularizers.l2(0.002)
))
Output layer
Add a dense layer (fully-connected layer) and use softmax activation function.
model.add(Dense(units=10, activation='softmax'))

We apply kernel regularizer to penalize the weights which are very large causing the
network to overfit, after applying kernel regularizer the weights will become smaller.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 32 / 64

Print model summary
model.summary()

Model: "sequential"

Layer (type) Output Shape Param #

===

flatten (Flatten) (None, 784) 0

dense (Dense) (None, 128) 100480

dense_1 (Dense) (None, 128) 16512

dense_2 (Dense) (None, 10) 1290

===

Total params: 118,282

Trainable params: 118,282

Non-trainable params: 0

Plot the model
plot_model(model,

show_shapes=True,
show_layer_names=True

)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 33 / 64

5. Compile the Model

Create an Adam optimizer by creating an object
Set learning rate to 0.001
Note: Optimizers are Classes or methods used to change the attributes
of your machine/deep learning model such as weights and learning rate
in order to reduce the losses.
adam_optimizer = Adam(learning_rate=0.001)

Compile the model, i.e., configures the model for training
Use crossentropy loss function since there are two or more label classes.
Use adam algorithm (a stochastic gradient descent method)
Use accuracy as metric, i.e., report on accuracy
model.compile(

optimizer=adam_optimizer,
loss=sparse_categorical_crossentropy,
metrics=['accuracy']

)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 34 / 64

6. Train the Model
TensorBoard is a visualization tool, enabling us to track metrics like
loss and accuracy, visualize the model graph, view histograms of weights, etc.
Create TensorBoard object to track experiment metrics like loss and
accuracy, visualizing the model graph, etc.
log_dir=".logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

log dir: the path of the directory where to save the log files
histogram freq: frequency (in epochs) at which to compute activation and weight
histograms for the layers of the model
tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1)

Fit the model, i.e., train the model
Specify training data and labels, number of epochs to train the model,
validation data, i.e., data on which to evaluate the loss
Write TensorBoard logs after every batch of training to monitor our metrices
training_history = model.fit(x_train, y_train, epochs=epochs,

validation_data=(x_test, y_test),
callbacks=[tensorboard_callback]

)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 35 / 64

7. Evaluate Model Accuracy

Evaluate the model
Specify testing data and labels
validation_loss, validation_accuracy = model.evaluate(x_test, y_test)
Print loss and accuracy
print('Validation loss: ', validation_loss)
print('Validation accuracy: ', validation_accuracy)

Output
Validation loss: 0.2004156953573227

Validation accuracy: 0.9646

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 36 / 64

8. Save the Model

Save the entire model to an HDFS (Hadoop Distributed File System) file.

The .h5 extension of the file indicates that the model should be saved in Keras format as
an HDFS file.
model_name = 'digits_recognition_mlp.h5'
model.save(model_name, save_format='h5')

loaded_model = load_model(model_name)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 37 / 64

9. Use the Model

To use the model, we call predict() function
Use the model to do prediction by specifying the image(s).
Get back a NumPy array of prediction
predictions = loaded_model.predict([x_test])
print('predictions:', predictions.shape)

Output

predictions: (10000, 10)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 38 / 64

Each prediction consists of 10 probabilities (one for each number from 0 to 9). The digit
with the highest probability is chosen as that would be a digit that our model is most
confident with.
Predictions in form of one-hot vectors (arrays of probabilities).
pd.DataFrame(predictions)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 39 / 64

Let's extract predictions with highest probabilites and
detect what digits have been actually recognized.
prediction_results = np.argmax(predictions, axis=1)

pd.DataFrame(prediction_results)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 40 / 64

numbers_to_display = 196 # Display 196 images
Compute number of images per row
num_cells = math.ceil(math.sqrt(numbers_to_display))
plt.figure(figsize=(10, 10)) # Each image is in size 10x10 inches

Show all the images
for i in range(numbers_to_display):

Number of rows, number of columns, index (start from 1)
plt.subplot(num_cells, num_cells, i + 1)
plt.xticks([]) # Remove all xticks
plt.yticks([]) # Remove all yticks
plt.grid(False) # No grid lines
Check if the prediction is correct. If so, display in green. Otherwise in red.
color_map = 'Greens' if prediction_results[i] == y_test[i] else 'Reds'
plt.imshow(x_test[i], cmap=color_map) # Display data as a color image
plt.xlabel(prediction_results[i]) # Show predicted image labels

Adjust the height of the padding between subplots to 1
Adjust the width of the padding between subplots to 0.5
plt.subplots_adjust(hspace=1, wspace=0.5)
plt.show() # Show the figure

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 41 / 64

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 42 / 64

10. Plotting a confusion matrix

The confusion matrix shows what numbers are recognized well by the model and what
numbers the model usually confuses to recognize correctly.

Compute confusion matrix to evaluate the accuracy of a classification
by creating a confusion matrix object.
Specify true labels and prediction results
cm = confusion_matrix(y_test, prediction_results)
Each image is in size 9x9 inches
f, ax = plt.subplots(figsize=(9, 9))
Draw heat map to show the magnitude in color
sn.heatmap(

cm, # data
annot=True, # True (write the data in each cell)
linewidths=.5, # Width of line that divides each cell
fmt="d", # Format of the data, decimal
square=True, # Make cell as square-shaped
ax=ax # Draw it on ax

)
plt.show() # Show the figure

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 43 / 64

Problem: Vanishing Gradient and Exploding Gradient

One of the problems of training a neural network (especially with many hidden layers) is
the vanishing and exploding gradient.

When we train a neural network, the gradient or the slope can get very big or very small
or exponentially small, which makes training difficult.

As a consequence, the weights are not updated anymore, and learning stalls.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 44 / 64

How to Know Whether Model is Suffering from Vanishing/Exploding
Gradient?

For vanishing gradient
The parameters of the higher layers vary dramatically, whereas the parameters of the lower
levels do not change significantly for vanishing (or not at all).
During training, the model weights may become zero.
The model learns slowly, and after a few cycles, the training may become stagnant.

For exploding gradient
The model parameters are growing exponentially.
During training, the model weights may become NaN.
The model goes through an avalanche learning process.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 45 / 64

Problem: Overfitting and Underfitting
Overfitting

It refers to a model that models the training data too well. It happens when a model learns
the detail and noise in the training data to the extent that it negatively impacts the
performance of the model on the new data.

Underfitting
It refers to a model that can neither model the training data nor generalize to new data.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 46 / 64

How Many Layers and Number of Neurons in Each of These Layers?
The input layer

Number of layers = 1
Number of neurons = Number of features (i.e., columns) in our data (e.g., for XOR, the
number of neurons in the input layer is 2)

The output layer
Number of layers = 1
Number of neurons = Mostly 1, unless softmax is used (Just like the handwritten digits
example)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 47 / 64

How Many Layers and Number of Neurons in Each of These Layers?
The hidden layers

Number of layers
If our data is linearly separable, NO hidden layer at all.
If data is less complex and has few dimensions or features, neural networks with 1 to 2 hidden
layers would work.
If data has large dimensions or features, 3 to 5 hidden layers can be used to get an optimum
solution.

Number of neurons:
The number of hidden neurons should be between the size of the input layer and the output
layer.
The most appropriate number of hidden neurons is√

input layer nodes × output layer nodes

The number of hidden neurons should keep decreasing in subsequent layers to get closer to
pattern and feature extraction and identify the target class.

The above algorithms are only a general use case, and they can be moulded according to the use case.
Sometimes the number of nodes in hidden layers can also increase in subsequent layers, and the number of
hidden layers can also be more than the ideal case. This depends on the use case and problem statement that
we are dealing with.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 48 / 64

Example

Each sample has two inputs and one out-
put presenting the class label

One possible decision boundary separates
the data correctly

Another possible decision boundary sepa-
rates the data correctly

Two lines are required to represent the de-
cision boundary, which tells us the first
hidden layer will have two hidden neurons

The two lines are to be connected by an-
other neuron, which is in the output layer

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 49 / 64

The Role of Weights

Weights are the real values associated with
each feature which tells the importance of
that feature in predicting the final value.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 50 / 64

The Effect for the Change of Weights
Suppose we have the following perceptron:

Let’s get the output functions by setting w to 1, 2, 3, θ to 0, and using sigmoid
activation function. Now, plot the output functions and figure out the use of weights.

y = f (0.5x + 0)

y = f (1x + 0)

y = f (2x + 0)

y = f (3x + 0)

According to the example, we can see that weights control the steepness of the activation function.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 51 / 64

What is the Role of Biases?
Suppose we have the following perceptron:

Now, let’s get another set of output functions by setting w to 1, θ to 0, 1, 2, and 3, and
using the sigmoid activation function. Plot the output functions and try to figure out the
use of biases.

y = f (1x + 0)

y = f (1x + 1)

y = f (1x + 2)

y = f (1x + 3)

According to the example, we can see that bias is used for shifting the activation function towards the
left or right.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 52 / 64

Activation Functions

The choice of activation function in the hidden layer has a large impact on the capability
and performance of the neural network.

An activation function in a neural network defines how the weighted sum of the input is
transformed into an output from a node or nodes in a layer of the network.

All hidden layers typically use the same activation function. The output layer will typically
use a different activation function from the hidden layers and is dependent upon the type
of prediction required by the model.

Typically, a differentiable non-linear activation function is used in the hidden layers of a
neural network. This allows the model to learn more complex functions.

Three most commonly used activation functions in hidden layers:

Rectified Linear Activation (ReLU)
Logistic (Sigmoid)
Hyperbolic Tangent (Tanh)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 53 / 64

ReLU Hidden Layer Activation Function
ReLU function is defined as f (x) = max(0, x)

It is the most common function used for hidden layers.

It is simple to implement and effectively overcome the limitations of other previously
popular activation functions, such as Sigmoid and Tanh. Specifically, it is less susceptible
to vanishing gradients.

When using the ReLU function for hidden layers, it is good to use “He Normal” or “He
Uniform” weight initialization and scale input data to the range of 0-1 before training.
initializer = tf.keras.initializers.HeNormal()
initializer = tf.keras.initializers.HeUniform()
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 54 / 64

Sigmoid Hidden Layer Activation Function
Sigmoid function is defined as f (x) =

1

1 + e−x

The sigmoid activation function is also called the logistic function.
When using the sigmoid function for hidden layers, it is good to use a “Glorot Normal” or
“Glorot Uniform” weight initialization and scale input data to the range 0-1 before
training.
Note: Glorot initializer is also called Xavier initializer.
initializer = tf.keras.initializers.GlorotNormal()
initializer = tf.keras.initializers.GlorotUniform()
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 55 / 64

Tanh Hidden Layer Activation Function

Tanh function is defined as
f (x) =

ex − e−x

ex + e−x

When using the Tanh function for hidden layers, it is good to use a “Glorot Normal” or
“Glorot Uniform” weight initialization and scale input data to the range -1 to 1 before
training.
Note: Glorot initializer is also called Xavier initializer.
initializer = tf.keras.initializers.GlorotNormal()
initializer = tf.keras.initializers.GlorotUniform()
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 56 / 64

How to Choose a Hidden Layer Activation Function?

Both the Sigmoid and Tanh functions can make the model more susceptible to problems
during training via the so-called vanishing gradients problem.

The activation function used in hidden layers is typically chosen based on the type of
neural network architecture.

Modern neural network models with common architectures, such as MLP and CNN (will
be mentioned soon), will use the ReLU activation function or extensions.

Recurrent networks (a type of neural network that has at least one loop) still commonly
use Tanh or sigmoid activation functions, or even both.

Summary

Neural Network Commonly Used Activation Function

Multi-layer Perceptron (MLP) ReLU activation function

Convolutional Neural Network (CNN) ReLU activation function

Recurrent Neural Network (RNN) Tanh and/or Sigmoid activation function

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 57 / 64

Activation Function for Output Layers
The output layer is the layer in a neural network model that directly outputs a prediction.
There are three commonly used activation functions for use in the output layer.

Linear
Logistic (Sigmoid)
Softmax

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 58 / 64

Linear Output Activation Function
The linear output activation function is defined as:

f (x) = x

The linear activation function is also called “identity” (multiplied by 1.0) or “no
activation”.

Target values used to train a model with a linear activation function in the output layer
are typically scaled before modeling using normalization or standardization transforms.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 59 / 64

Sigmoid Output Activation Function

Recall, the Sigmoid activation function is defined as:

f (x) =
1

1 + e−x

Target labels used to train a model with a Sigmoid activation function in the output layer
will have the values 0 or 1.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 60 / 64

Softmax Output Activation Function

Softmax is a mathematical function that converts an array (or vector) of numbers into an
array (or vector) of probabilities.

The softmax function is defined as:

x = [x0, x1, . . . , xn−1]

f (xi) =
exi∑n−1
j=0 exj

The softmax function is used as the activation function for multi-class classification
problems where class membership is required on more than two class labels.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 61 / 64

How to Choose an Output Activation Function

We choose the activation function for your output layer based on the prediction problem
we are solving.

If a problem is a regression problem, we should use a linear activation function.

If a problem is a classification problem, then there are three main types of classification
problems, and each may use a different activation function.

1. Binary classification: One node, sigmoid activation.
2. Multiclass classification: One node per class, softmax activation
3. Multilabel classification: One node per class, sigmoid activation

Note: Multiclass classification makes the assumption that each sample is assigned to one and
only one label. Multilabel classification assigns to each sample a set of target labels.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 62 / 64

When to Use Multi-layer Perceptrons?

Multi-layer perceptrons are suitable for classification prediction problems where inputs are
assigned a class or label.

They are also suitable for regression prediction problems where a real-valued quantity is
predicted given a set of inputs. Data is often provided in a tabular format, such as we
would see in a CSV file or a spreadsheet.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 63 / 64

That’s all!

Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 64 / 64

