
COMP 2211 Exploring Artificial Intelligence

K-Nearest Neighbor Classifier

Dr. Desmond Tsoi
Department of Computer Science & Engineering

The Hong Kong University of Science and Technology, Hong Kong SAR, China

Problem

Suppose we have the height, weight and T-shirt size of some customers as follows:

Height (in cm) 158 158 158 160 160 163 163 160 163

Weight (in kg) 58 59 63 59 60 60 61 64 64

T-shirt Size M M M M M M M L L

Height (in cm) 165 165 165 168 168 168 170 170 170

Weight (in kg) 61 62 65 62 63 66 63 64 68

T-shirt Size L L L L L L L L L

Can we predict the T-shirt size of a new customer given only the height and weight
information we have?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 2 / 34

K-Nearest Neighbor

K-Nearest Neighbor (aka KNN) is one of the most used machine learning algorithms due
to its simplicity.

KNN is a lazy learning (why lazy?), non-parametric algorithm, as it does not make any
assumptions on the data being studied (e.g. the distribution of the data).

It uses data with several classes to predict the classification of the new sample point. In
other words, it captures information of all training data and classifies the new data based
on similarity.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 3 / 34

Steps
1. Prepare training data and test data.

2. Select a value K.

3. Determine which distance function is to be used.

4. Compute the distance of the new data to its n training samples.

5. Sort the distances obtained and take the K-nearest data samples.

6. Assign the test sample to the class based on the majority vote of its K nearest neighbors.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 4 / 34

Step 1: Prepare Training Data and Test Data &
Step 2: Select a Value K

Training data

Height (in cm) 158 158 158 160 160 163 163 160 163

Weight (in kg) 58 59 63 59 60 60 61 64 64

T-shirt Size M M M M M M M L L

Height (in cm) 165 165 165 168 168 168 170 170 170

Weight (in kg) 61 62 65 62 63 66 63 64 68

T-shirt Size L L L L L L L L L

Testing data

Height: 161cm and weight: 61kg

Let’s pick K = 5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 5 / 34

Step 3: Determine Which Distance Function to Use

Let xTrain be a training data, which has n attributes:

xTrain = {xTrain1 , xTrain2 , . . . , xTrainn }

and xTest be a testing data, which also has n attributes:

xTest = {xTest1 , xTest2 , . . . , xTestn }

Assume Euclidean distance is used

distance(xTrain, xTest) =

√√√√ n∑
i=1

(xTraini − xTesti)2

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 6 / 34

Step 4: Compute the Distance of the New Data to Its n Training Samples

Testing data:
Height: 161cm and weight: 61kg

Height (in cm) 158 158 158 160 160 163 163 160 163

Weight (in kg) 58 59 63 59 60 60 61 64 64

T-shirt Size M M M M M M M L L

Distance between
the training data and

testing data
4.24 3.61 3.61 2.24 1.41 2.24 2.00 3.16 3.61

Height (in cm) 165 165 165 168 168 168 170 170 170

Weight (in kg) 61 62 65 62 63 66 63 64 68

T-shirt Size L L L L L L L L L

Distance between
the training data and

testing data
4.00 4.12 5.66 7.07 7.28 8.60 9.22 9.49 11.40

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 7 / 34

Step 5: Sort the Distances Obtained and Take the K-nearest Data Samples

K = 5

Height (in cm) 160 163 160 163 160 158 158 163 165

Weight (in kg) 60 61 59 60 64 59 63 64 61

T-shirt Size M M M M L M M L L

Distance between
the training data and

testing data
1.41 2.00 2.24 2.24 3.16 3.61 3.61 3.61 4.00

Height (in cm) 165 158 165 168 168 168 170 170 170

Weight (in kg) 62 58 65 62 63 66 63 64 68

T-shirt Size L M L L L L L L L

Distance between
the training data and

testing data
4.12 4.24 5.66 7.07 7.28 8.60 9.22 9.49 11.40

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 8 / 34

Step 6: Assign the Test Sample to the Class Based On The Majority Vote
of Its K Nearest Neighbors

Height (in cm) 160 163 160 163 160

Weight (in kg) 60 61 59 60 64

T-shirt Size M M M M L

Distance between
the training data and

testing data
1.41 2.00 2.24 2.24 3.16

Among the 5 customers, 4 of them had “Medium T-shirt Sizes” and 1 had “Large T-shirt
Size”.

So, we classify the test data to “Medium T-shirt”, i.e., the best guess for the customer
with height = 161cm and weight = 61kg is “Medium T-shirt Size”.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 9 / 34

KNN Implementation using Scikit-Learn
from sklearn.preprocessing import LabelEncoder # Import LabelEncoder function
from sklearn.neighbors import KNeighborsClassifier # Import KNeighborsClassifier function
import numpy as np # Import NumPy

Assign features and label variables
height = np.array([158, 158, 158, 160, 160, 163, 163, 160, 163, 165, 165, 165, 168, 168, 168, 170, 170, 170])
weight = np.array([58, 59, 63, 59, 60, 60, 61, 64, 64, 61, 62, 65, 62, 63, 66, 63, 64, 68])
size = np.array([’M’,’M’,’M’,’M’,’M’,’M’,’M’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’])

Create LabelEncoder that used to convert string labels to numbers
encoder = LabelEncoder()
Convert string labels into numbers
label = encoder.fit_transform(size)
Combine height and weight into single list of tuples
features = list(zip(height,weight))

Create a KNN classifier and set K=5
model = KNeighborsClassifier(n_neighbors=5)
Train the model using the training sets
model.fit(features, label)

Predict output
predicted = model.predict([[161,61]]) # height = 161, weight = 61

Convert number to string label
predicted = encoder.inverse_transform(predicted)
print(predicted)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 10 / 34

Standardization

When the training data are measured in different units, it is important to standardize
variables (i.e. the attributes) before calculating distance.

For example, if one attribute is based on height in cm, and the other is based on weight
in kg, then height will influence more on the distance calculation.

In order to make the attributes comparable, we need to standardize them which can be
done by any of the following methods:

Xnew =
X −mean

standard deviation
Xnew =

X −mean

max −min
Xnew =

X −min

max −min

where X is the attribute value, Xnew is the standardized attribute value, mean is the
mean attribute value of all training data, max is the maximum attribute value of all
training data, min is the minimum attribute value of all the training data,
standard deviation is the standard deviation of the attribute value of all the training data.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 11 / 34

Mean of height = 164, Standard deviation of height = 4.33
Mean of Weight = 62.33, Standard deviation of weight = 2.63
After standardization using Xnew = X−mean

standard deviation , the 5th closest value got changed as height
was dominating earlier before standardization.

Testing data: Height: 161cm and weight: 61kg

Height (in cm) 160 163 160 163 160 158 158 163 165
Weight (in kg) 60 61 59 60 64 59 63 64 61
T-shirt Size M M M M L M M L L

Distance between the training data
and testing data

1.41 2.00 2.24 2.24 3.16 3.61 3.61 3.61 4.00

Distance between the training data
and testing data (standardization)

0.44 0.46 0.60 0.79 1.16 1.03 1.03 1.23 0.92

Height (in cm) 165 158 165 168 168 168 170 170 170
Weight (in kg) 62 58 65 62 63 66 63 64 68
T-shirt Size L M L L L L L L L

Distance between
the training data and

testing data
4.12 4.24 5.66 7.07 7.28 8.60 9.22 9.49 11.40

Distance between
the training data and

testing data (standardization)
1.00 1.33 1.78 1.66 1.79 2.49 2.22 2.37 3.37

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 12 / 34

KNN Implementation using Scikit-Learn (Standardization)
from sklearn.preprocessing import LabelEncoder # Import LabelEncoder function
from sklearn.neighbors import KNeighborsClassifier # Import KNeighborsClassifier function
import numpy as np # Import NumPy

Assign features and label variables
height = np.array([158, 158, 158, 160, 160, 163, 163, 160, 163, 165, 165, 165, 168, 168, 168, 170, 170, 170])
h_mean = np.mean(height); h_std = np.std(height,ddof=1) # ddof=1 is to make the divisor to n-1, i.e., sample mean
height = (height - h_mean)/h_std
weight = np.array([58, 59, 63, 59, 60, 60, 61, 64, 64, 61, 62, 65, 62, 63, 66, 63, 64, 68])
w_mean = np.mean(weight); w_std = np.std(weight,ddof=1) # ddof=1 is to make the divisor to n-1, i.e., sample mean
weight = (weight - w_mean)/w_std
size = [’M’,’M’,’M’,’M’,’M’,’M’,’M’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’]

Create LabelEncoder that used to convert string labels to numbers
encoder = LabelEncoder()
Convert string labels into numbers
label = encoder.fit_transform(size)
Combine height and weight into single list of tuples
features = list(zip(height,weight))
Create a KNN classifier and set K=5
model = KNeighborsClassifier(n_neighbors=5)
Train the model using the training sets
model.fit(features, label)

Predict output
predicted = model.predict([[(161-h_mean)/h_std,(61-w_mean)/w_std]]) # height = 161, weight = 61
Convert number to string label
predicted = encoder.inverse_transform(predicted)
print(predicted)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 13 / 34

Outlier

A Low K-value is sensitive to outliers and a higher K-value is more resilient to outliers as
it considers more voters to decide prediction.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 14 / 34

Distance Functions
There are a lot of different distance functions available.
Some common ones are:

Euclidean distance (The one we used earlier)
Manhattan distance (aka City block distance)
Cosine distance
Hamming distance

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 15 / 34

Manhattan Distance

distance(xTrain, xTest) =
n∑

i=1

|xTraini − xTesti |

where | · | denote absolute value.

Example:
Training data: (Height, Weight) = (160, 60), Testing data: (Height, Weight) = (163, 61)

distance = |160− 163|+ |60− 61| = 4

Question

When Manhattan distance is preferred over Euclidean distance?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 16 / 34

Cosine Distance

cosθ =

∑n
i=1(x

Train
i × xTesti)√∑n

i=1(x
Train
i)2

√∑n
i=1(x

Test
i)2

Distance = 1− cosθ

Example:
Training data: (Height, Weight) = (160, 60), Testing data: (Height, Weight) = (163, 61)

cosθ =
(160× 163) + (60× 61)√
1602 + 602

√
1632 + 612

= 0.99999977

Distance = 1− 0.99999977 = 2.26× 10−7

Question

Using Cosine distance, we get values between 0 and 1, where 0 means the training data and
test data are 100% similar to each other, and 1 means they are not similar at all.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 17 / 34

Hamming Distance

Hamming distance is a way for comparing two binary data strings.

While comparing two binary strings of equal length, Hamming distance is the number of
bit positions in which the two bits are different.

Example: Suppose there are two strings 1101 1001 and 1001 1101, then the hamming
distance between the two strings is 2.

1 1 0 1 1 0 0 1

1 0 0 1 1 1 0 1

+1 +1

Hamming distance is for categorical data.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 18 / 34

Good Value of K

To break a tie,

Decrease K by 1 until we have broken the tie.
Put more weight for the nearest points than the farther points.

Should not be too small or too large.

Rule of thumb: Set K =
√
n

(An explanation will be given in a supplementary notes.)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 19 / 34

Using Cross-validation to Estimate K
Suppose we select K using d-fold cross validation

1. Split the training data into d groups, or folds, of approximately equal size.
2. Hold the first group. This is called the validation set.
3. Train your classifier on the remaining data.
4. For each value of K

Classify each data in the validation set, using its K-nearest neighbors in the training set.
Record the error.

5. Repeat steps 1-4 for all d choices of the validation set.
6. For each choice of K, find the average error across validation sets. Choose the value of K

with the lowest error.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 20 / 34

Using Cross-validation to Estimate K

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 21 / 34

Pros and Cons

Pros:

Easy to understand.
No assumptions about data.
Can be applied to both classification and regression.
Note: For KNN regression, the resulting value can be calculated by taking the average of the
output value for the top K nearest neighbors.
Works easily on multi-class problems.

Cons:

Memory intensive / Computationally expensive.
Sensitive to scale of data.
Struggle when high number of attributes.
Does not work well with categorical features since it is difficult to find the distance between
dimensions with categorical features.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 22 / 34

Speed Up KNN

Reduce the dimension of training data (e.g., using Principle-Component Analysis).

Use good data structures to store the data, e.g., KD-tree.

Parallelizing the distance computations.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 23 / 34

KNN Applications

Handwritten character classification

Fast content-based image retrieval

Intrusion detection

Fault detection for semiconductor manufacturing processes

· · ·

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 24 / 34

Practice Problem
Suppose we have age and salary of some customers, as well as whether they purchased
certain item or not.

Age 19 35 26 27 19 27 27 32 25 35 26
Salary (K) 19 20 43 57 76 58 84 150 33 65 80
Purchased No No No No No No No Yes No No No

Age 26 20 32 18 29 47 45 46 48 45 47
Salary (K) 52 86 18 82 80 25 26 28 29 22 49
Purchased No No No No No Yes Yes Yes Yes Yes Yes

Can we predict whether a new customer will purchase the item given only the age and
salary of the customer?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 25 / 34

Step 1: Prepare Training Data and Test Data &
Step 2: Select a Value K

Training data

Age 19 35 26 27 19 27 27 32 25 35 26

Salary (K) 19 20 43 57 76 58 84 150 33 65 80

Purchased No No No No No No No Yes No No No

Age 26 20 32 18 29 47 45 46 48 45 47

Salary (K) 52 86 18 82 80 25 26 28 29 22 49

Purchased No No No No No Yes Yes Yes Yes Yes Yes

Testing data

Age: 20 and Salary (K): 38

Let’s pick K = 5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 26 / 34

Step 3: Determine Which Distance Function to Use

Let xTrain be a training data, which has n attributes:

xTrain = {xTrain1 , xTrain2 , . . . , xTrainn }

and xTest be a testing data, which also has n attributes:

xTest = {xTest1 , xTest2 , . . . , xTestn }

Assume Euclidean distance is used

distance(xTrain, xTest) =

√√√√ n∑
i=1

(xTraini − xTesti)2

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 27 / 34

Step 4: Compute the Distance of the New Data to Its n Training Samples

Testing data:
Age: 20 and Salary (in K): 38

Age 19 35 26 27 19 27 27 32 25 35 26
Salary (K) 19 20 43 57 76 58 84 150 33 65 80
Purchased No No No No No No No Yes No No No

Distance between
the training data
and testing data

19.03 23.43 7.81 20.25 38.01 21.19 46.53 112.64 7.07 30.89 42.44

Age 26 20 32 18 29 47 45 46 48 45 47
Salary (K) 52 86 18 82 80 25 26 28 29 22 49
Purchased No No No No No Yes Yes Yes Yes Yes Yes

Distance between
the training data
and testing data

15.23 48.00 23.32 44.05 42.95 29.97 27.73 27.86 29.41 29.68 29.15

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 28 / 34

Step 5: Sort the Distances Obtained and Take the K-nearest Data Samples

K = 5

Age 25 26 26 19 27 27 32 35 45 46 47
Salary (K) 33 43 52 19 57 58 18 20 26 28 49
Purchased No No No No No No No No Yes Yes Yes

Distance between
the training data
and testing data

7.07 7.81 15.23 19.03 20.25 21.19 23.32 23.43 27.73 27.86 29.15

Age 48 45 47 35 19 26 29 18 27 20 32
Salary (K) 29 22 25 65 76 80 80 82 84 86 150
Purchased Yes Yes No No No No No No No No Yes

Distance between
the training data
and testing data

29.41 29.68 29.97 30.89 38.01 42.43 42.95 44.05 46.53 48.00 112.64

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 29 / 34

Step 6: Assign the Test Sample to the Class Based On The Majority Vote
of Its K Nearest Neighbors

Age 25 26 26 19 27

Salary (K) 33 43 52 19 57

Purchased No No No No No

Distance between
the training data
and testing data

7.07 7.81 15.23 19.03 20.25

Among the 5 customers, 5 of them did not purchase the item.

So, we classify the test data to “No”, i.e., the best guess for the customer with age = 20
and salary = 38K will not purchase the item.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 30 / 34

KNN Implementation using Scikit-Learn
from sklearn.preprocessing import LabelEncoder # Import LabelEncoder function
from sklearn.neighbors import KNeighborsClassifier # Import KNeighborsClassifier function
import numpy as np # Import NumPy

Assign features and label variables
age = np.array([19, 35, 26, 27, 19, 27, 27, 32, 25, 35, 26, 26, 20, 32, 18, 29, 47, 45, 46, 48, 45, 47])
salary = np.array([19, 20, 43, 57, 76, 58, 84, 150, 33, 65, 80, 52, 86, 18, 82, 80, 25, 26, 28, 29, 22, 49])
purchased = np.array([’No’, ’No’, ’No’, ’No’, ’No’, ’No’, ’No’, ’Yes’, ’No’, ’No’, ’No’, ’No’, ’No’, ’No’, ’No’, ’No’, ’Yes’, ’Yes’, ’Yes’, ’Yes’, ’Yes’, ’Yes’])

Create LabelEncoder that used to convert string labels to numbers
encoder = LabelEncoder()
Convert string labels into numbers
label = encoder.fit_transform(purchased)
Combine height and weight into single list of tuples
features = list(zip(age,salary))

Create a KNN classifier and set K=5
model = KNeighborsClassifier(n_neighbors=5)
Train the model using the training sets
model.fit(features, label)

Predict output
predicted = model.predict([[20,38]]) # age = 20, salary = 38

Convert number to string label
predicted = encoder.inverse_transform(predicted)
print(predicted)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 31 / 34

Mean of age = 31.86, Standard deviation of age = 10.18
Mean of salary = 53.73, Standard deviation of salary = 32.46
After standardization using Xnew = X−mean

standard deviation , the 5 closest values remain
unchanged.

Testing data: Age: 20 and salary(K): 38

Age 25 26 26 19 27 27 32 35 45 46 47
Salary (K) 33 43 52 19 57 58 18 20 26 28 49
Purchased No No No No No No No No Yes Yes Yes

Distance between
the training data
and testing data

7.07 7.81 15.23 19.03 20.25 21.19 23.32 23.43 27.73 27.86 29.15

Distance between
the training data
and testing data
(standardization)

0.51 0.61 0.73 0.59 0.90 0.92 1.33 1.57 2.48 2.57 2.67

Age 48 45 47 35 19 26 29 18 27 20 32
Salary (K) 29 22 25 65 76 80 80 82 84 86 150
Purchased Yes Yes No No No No No No No No Yes

Distance between
the training data
and testing data

29.41 29.68 29.97 30.89 38.01 42.43 42.95 44.05 46.53 48.00 112.64

Distance between
the training data
and testing data
(standardization)

2.76 2.50 2.68 1.69 1.17 1.42 1.57 1.37 1.58 1.48 3.65

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 32 / 34

KNN Implementation using Scikit-Learn (Standardization)
from sklearn.preprocessing import LabelEncoder # Import LabelEncoder function
from sklearn.neighbors import KNeighborsClassifier # Import KNeighborsClassifier function
import numpy as np # Import NumPy

Assign features and label variables
age = np.array([19, 35, 26, 27, 19, 27, 27, 32, 25, 35, 26, 26, 20, 32, 18, 29, 47, 45, 46, 48, 45, 47])
a_mean = np.mean(age)
a_std = np.std(age,ddof=1) # ddof=1 is to make the divisor to n-1, i.e., sample mean
age = (age - a_mean)/a_std
salary = np.array([19, 20, 43, 57, 76, 58, 84, 150, 33, 65, 80, 52, 86, 18, 82, 80, 25, 26, 28, 29, 22, 49])
s_mean = np.mean(salary)
s_std = np.std(salary,ddof=1) # ddof=1 is to make the divisor to n-1, i.e., sample mean
salary = (salary - s_mean)/s_std
purchased = np.array([’No’, ’No’, ’No’, ’No’, ’No’, ’No’, ’No’, ’Yes’, ’No’, ’No’, ’No’,

’No’, ’No’, ’No’, ’No’, ’No’, ’Yes’, ’Yes’, ’Yes’, ’Yes’, ’Yes’, ’Yes’])

Create LabelEncoder that used to convert string labels to numbers
encoder = LabelEncoder()
Convert string labels into numbers
label = encoder.fit_transform(purchased)
Combine height and weight into single list of tuples
features = list(zip(age,salary))
Create a KNN classifier and set K=5
model = KNeighborsClassifier(n_neighbors=5)
Train the model using the training sets
model.fit(features, label)

Predict output
predicted = model.predict([[(20-a_mean)/a_std,(38-s_mean)/s_std]]) # age = 20, salary = 38
Convert number to string label
predicted = encoder.inverse_transform(predicted)
print(predicted)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 33 / 34

That’s all!

Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 34 / 34

