
COMP 2211 Exploring Artificial Intelligence

Python Fundamentals for Artificial Intelligence

Dr. Desmond Tsoi
Department of Computer Science & Engineering

The Hong Kong University of Science and Technology, Hong Kong SAR, China

Why More Python?

You have taken COMP 1021/COMP 1029P. So you can program
in Python, right?

Think about this: You have been learned Python (mostly
Turtle) in COMP1021, but can you write AI programs?

You basically have learned the basics of Python in
COMP1021/COMP1029P with a brief introduction to
Python classes, and you can write small Python programs.

In this topic, we will give you a crash course on both the
Python programming language and other essentials for
writing AI programs.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 2 / 95

Part I

Crash Course on Python Programming Language

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 3 / 95

Python

Python is a high-level, dynamically typed multiparadigm programming language.

Python code is often said to be almost like pseudocode, since it allows you to express very
powerful ideas in very few lines of code while being very readable.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 4 / 95

A Python Program that Prime Factorizes a Number

File: prime_factorize.py

def prime_check(n):

for i in range(2,n):

if n%i == 0: return False

return True

n = int(input("Enter the Number: "))

print(str(n)+" = ",end='')

for i in range (2,n+1):

c = 0

if prime_check(i) == True:

while True:

if(n%i == 0):

n /= i

c+= 1

else: break

if c == 1:

print(str(i)+" x ",end='')

elif c !=0:

print(str(i)+"^"+str(c)+" x ",end='')

print(" \b\b\b ")

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 5 / 95

Python Versions

As of January 1, 2020, Python has officially dropped support
for python2.

For this course, all code will use Python 3.7.

The latest version is Python 3.10.2.

You can double-check your Python version at the command
line after activating your environment by running

import sys

print(sys.version)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 6 / 95

Data Types and Arithmetic Operations

Like most languages, Python has a number of basic types including integers, floats,
booleans, strings, and containers including lists, dictionaries, set, tuples.

The basic types behave in ways that like the other programming languages.

Name Type Description

Integers int Whole numbers, such as: 3, 300, 200

Floating point float Numbers with a decimal point: 2.3, 4.6, 100.0

Booleans bool Logical value indicating True or False

Strings str Ordered sequence of characters: "Hello", ‘Desmond’, "2000"

Lists list Ordered sequence of objects: [10, "Hello", 200.3]

Dictionaries dict Unordered Key:Value pairs: {"mykey" : "value", "name" : "Desmond"}
Sets set Unordered collection of unique objects: {"a", "b"}
Tuples tup Ordered immutable sequence of objects: ("a", "b")

type() method returns class type of the argument(object) passed as
parameter. type() function is mostly used for debugging purposes.

Syntax

type(<object>)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 7 / 95

Integers and Floats

Python supports integers and floating-point
numbers.

It also implements all arithmetic operators, i.e.,
+, -, *, /, //, %, **, (), +=, -=, *=, /=, %=

Note:

Unlike many languages, Python does not
have increment (x++, ++x) or
decrement (x−−, −−x) operators

x = 3
print(type(x)) # Print "<class 'int'>"
print(x) # Print "3"
print(x + 1) # Addition; print "4"
print(x - 1) # Subtraction; print "2"
print(x * 2) # Multiplication; print "6"
print(x / 2) # Division, print "1.5"
print(x // 2) # Integer division, print "1"
print(x % 2) # Modulus; print "1"
print(x ** 2) # Exponentiation; print "9"
x += 1; print(x) # Print "4"
x *= 2; print(x) # Print "8"
y = 2.5; print(type(y)) # Print "<class 'float'>"
print(y, y + 1, y * 2, y ** 2) # Print "2.5 3.5 5.0 6.25"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 8 / 95

Booleans

In Python, booleans represent one of two values: True or False.

Python implements all the relational operators (comparison operators), i.e.,
==, ! =, >,>=, <,<=, which returns True or False.

Python also implements all of the usual operators for Boolean logic, but uses English
(and/or) rather than symbols (&&, ||, etc.).

print(1 + 1 != 3) # Print "True"

print(4 + 6 == 10) # Print "True"

x = 3; y = 5

print(x + y > 7) # Print "True"

print(x * y <= 7) # Print "False"

t = True; f = False

print(type(t)) # Print "<class 'bool'>"

print(t and f) # Logical AND; print "False"

print(t or f) # Logical OR; print "True"

print(not t) # Logical NOT; print "False"

print(t != f) # Logical XOR; print "True"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 9 / 95

Strings

A string is a sequence of characters.

Strings in Python are surrounded by either single quotation marks, or double quotation
marks.

Python has great support for strings.

hello = 'hello' # String literals can use single quotes

world = "world" # or double quotes; it does not matter

print(hello) # Print "hello"

print(len(hello)) # String length; print "5"

hw = hello + ' ' + world # String concatenation

print(hw) # Print "hello world"

hw12 = '%s %s %d' % (hello, world, 12) # sprintf style string formatting

print(hw12) # Print "hello world 12"

print(type(hw12)) # Print "<class 'str'>"

print(hello * 3) # Print "hellohellohello",

i.e., "hello" is duplicated by 3 times

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 10 / 95

Strings

We can add a prefix in front of strings.

Prefix Meaning Example

u or U Unicode string (default in Python 3) u”Desmond”

b or B

Byte (ASCII) string
Bytes are machine-readable (can be directly stored on the disk,
need decoding to become human-readable) and string is
human-readable (need encoding before they can be stored on disk)

b”Desmond”

r or R

Raw string, i.e., a character following a backslash is included in
the string without change. This is useful when we want to have
a string that contains backslash and do not want it to be treated
as an escape character.

r”\nDesmond\n”

f or F Formatted string, i.e., contains expressions inside braces
a = 1
b = 2
print(f’a+b={a+b}’)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 11 / 95

Examples

unicode_string = u'COMP2211'

print(unicode_string) # Print "COMP2211"

byte_string = b'COMP2211'

print(type(byte_string)) # Print "<class 'bytes'>"

decode_string = byte_string.decode('utf-8')

print(type(decode_string)) # Print "<class 'str'>"

encode_string = decode_string.encode('utf-8')

print(type(encode_string)) # Print "<class 'bytes'>"

raw_string = r'Hi\nHello'

print(raw_string) # Print "Hi\nHello"

a = 1

b = 2

print(f'a + b = {a+b}') # Print "a + b = 3"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 12 / 95

String Objects

Strings are actually objects in Python.

String objects have a bunch of useful methods; for example:

s = "hello"

print(s.capitalize()) # Capitalize a string; prints "Hello"

print(s.upper()) # Convert a string to uppercase; prints "HELLO"

print(s.rjust(7)) # Right-justify a string, padding with spaces;

Print " hello"

print(s.center(7)) # Center a string, padding with spaces;

Print " hello "

print(s.replace('l', '(ell)')) # Replace all instances of one substring

with another; print "he(ell)(ell)o"

print(' world '.strip()) # Strip leading and trailing whitespace;

print "world"

Full List of all String Methods

https://docs.python.org/3.5/library/stdtypes.html#string-methods

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 13 / 95

https://docs.python.org/3.5/library/stdtypes.html#string-methods

Type Conversion

We can convert the data type of an object to required data type using the predefined
functions like int(), float(), bool(), str(), etc to perform explicit type conversion.

Syntax

<required-datatype>(<expression>)

Parameters:

required datatype: int, float, bool, str, etc.
expression: The expression to be type-converted

print(int('3') + 5) # Print "8"

print('3' + str(5)) # Print "35"

print(float(3) + 3) # Print "6.0"

print(int(3.14) + 3) # Print "6"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 14 / 95

Output Data to the Standard Output Device

print() function is used to output data to the standard output device (screen).

Syntax

print(*<objects>, <sep>=' ', <end>='\n', <file>=sys.stdout, <flush>=False)

Parameters:

objects: The value(s) to be printed
sep: The separator is used between the values. It defaults into a space character.
end: After all values are printed, end is printed. It defaults into a new line.
file: The object where the values are printed and its default value is sys.stdout (screen).
flush: To ensure that we get output as soon as print() is called, we need to set flush to True.

Output formatting can be done by using str.format() method. {} are used as placeholders,
and we can specify the order in which they are printed by using numbers. Also, we can even
use keyword arguments to format the string.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 15 / 95

Output Data to Standard Output Device

print('COMP2211 is the best COMP course :D') # Print a string

age = 18
print('I am', age, 'years old') # Print 'I am 18 years old'

print(2, 2, 1, 1) # Print 2 2 1 1
print(2, 2, 1, 1, sep='@') # Print 2@2@1@1
print(2, 2, 1, 1, sep='~', end='*') # Print 2~2~1~1*
print() # Print '\n', i.e., move to the next line

x = 'A+'; y = 'A'
Print 'Desmond will get A+ and John will get A'
print('Desmond will get {} and John will get {}'.format(x,y))
Print 'Desmond will get A+ and John will get A'
print('Desmond will get {0} and John will get {1}'.format(x,y))
Print 'Desmond will get A and John will get A+'
print('Desmond will get {1} and John will get {0}'.format(x,y))
Print 'Desmond will get A+ and John will get A'
print('Desmond will get {a} and John will get {b}'.format(a = 'A+', b = 'A'))

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 16 / 95

Input Data

We can take the input from the user using input() function.

Syntax

input(<prompt>)

Parameter:

prompt: The string we wish to display on the screen. It is optional.

Note: The entered data is a string.

age = input('Enter your age: ')

print(age) # Assume the input is 18. It prints "18"

print(type(age)) # Print "<class 'str'>"

print(type(int(age))) # Print "<class 'int'>"

print(type(float(age))) # Print "<class 'float'>"

age = int(age) + 1 # Convert age to int and increase it by 1

print('Now you are', age, 'years old') # Print "Now you are 19 years old"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 17 / 95

Containers

Python includes several built-in container types

Lists
Dictionaries
Sets
Tuples

Data Structure Ordered? Duplicate?
Indexing/
Slicing?

Changeable/
Mutable?

Constructor Example

List Yes Yes Yes Yes [] or list() [5.7, 4, ’yes’, 5.7]

Dictionary No No Yes Yes { } or dict() {’Jun’:75, ’Jul’:89}
Set No No No Yes { } or set() {5.7, 4, ’yes’}
Tuple Yes Yes Yes No () or tuple() (5.7, 4, ’yes’, 5.7)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 18 / 95

Lists

A list is the Python equivalent of an array, but is resizeable and can contain elements of
different types.

Syntax

<list-name> = [<value1>, <value2>, <value3>, ...]

Parameters:

list-name: A variable name of a list
value1, value2, value3, · · · : List values

Note: List literals are written within square brackets [].

The list items can be accessed using index operator ([] – not to be confused with an
empty list). The expression inside the brackets specifies the index.

The first element has index 0, and the last element has index (# of elements in the list - 1).
Negative index values will locate items from the right instead of from the left.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 19 / 95

Lists

The append() method adds an item to the end of the list.

Syntax

<list-name>.append(<item>)

Parameters:

list-name: The list that we want to append the element to
item: An item (number, string, list, etc.) to be added at the end of the list

The += operator adds a list of elements to the list

Syntax

<list-name> += <new-list-name>

Parameters:

list-name: The list that we want to append the new list to
new-list-name: The new list of elements to add

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 20 / 95

Lists
The pop() method removes and returns the last value from the list or the given index
value.

Syntax

<list-name>.pop(<index>)
Parameters:

list-name: The variable name of list that we want to remove an element
index: The value at index is popped out and removed. If the index is not given, then the last
element is popped out and removed

The remove() method removes the specified value from the list

Syntax

<list-name>.remove(<element>)
Parameters:

list-name: The variable name of list that we want to remove an element.
element: The element that we want to remove. If the element does not exist, it throws an exception.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 21 / 95

Lists
xs = [3, 1, 2] # Create a list

print(xs, xs[2]) # Print "[3, 1, 2] 2"

print(xs[-1]) # Negative indices count from the end of the list; print "2"

xs[2] = 'foo' # Lists can contain elements of different types

print(xs) # Print "[3, 1, 'foo']"

xs.append('bar') # Add a new element to the end of the list

print(xs) # Print "[3, 1, 'foo', 'bar']"

x = xs.pop() # Remove and return the last element of the list

print(x, xs) # Print "bar [3, 1, 'foo']"

ys = ['a', 3, [4.5, 'c', True]] # Create another list

print(ys) # Print ['a', 3, [4.5, 'c', True]]

print(ys[2][2]) # Print "True"

ys += [4, 5, 6] # Add 3 elements, 4, 5, 6 to ys

print(ys) # Print ['a', 3, [4.5, 'c', True], 4, 5, 6]

ys.remove(5) # Remove 5 from the list

print(ys) # Print ['a', 3, [4.5, 'c', True], 4, 6]

More Details About Lists

https://docs.python.org/3.5/tutorial/datastructures.html#more-on-lists

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 22 / 95

https://docs.python.org/3.5/tutorial/datastructures.html#more-on-lists

Slicing

In addition to accessing list elements one at a time, Python provides concise syntax to
access sublists; this is known as slicing.

Syntax

<new-list-name> = <list-name>[<start>:<end(exclusive)>:<jump>]

Parameters:

list-name: The name of list to be sliced
new-list-name: The name of the extracted sub-list
start: The index of the start element
end: The index of the element after the last element
jump: The index step jump

It returns the portion of the list from index “start” to index “end”(exclusive), at a step size
“jump”.

Note: If parameters are omitted, the default value of start, end, and jump are 0, (#elements in the
list), 1, respectively.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 23 / 95

Slicing

nums = list(range(5)) # range is a built-in function that creates a

list of integers, [0, 1, 2, 3, 4]

print(nums) # Print "[0, 1, 2, 3, 4]"

print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive);

print "[2, 3]"

print(nums[2:]) # Get a slice from index 2 to the end;

print "[2, 3, 4]"

print(nums[:2]) # Get a slice from the start to index 2 (exclusive);

print "[0, 1]"

print(nums[:]) # Get a slice of the whole list;

print "[0, 1, 2, 3, 4]"

print(nums[:-1]) # Slice indices can be negative;

print "[0, 1, 2, 3]"

print(nums[0:4:2]) # Print "[0, 2]"

nums[2:4] = [8, 9] # Assign a new sublist to a slice

print(nums) # Print "[0, 1, 8, 9, 4]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 24 / 95

Loops

You can loop over the elements of a list like this:

animals = ['cat', 'dog', 'monkey']

for animal in animals:

print(animal) # Prints "cat", "dog", "monkey", each on its own line.

Alternative

for index in range(3):

print(animals[index])

Prints "cat", "dog", "monkey", each on its own line.

i = 0

while i < len(animals):

print(animals[i])

i = i + 1 # Prints "cat", "dog", "monkey", each on its own line.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 25 / 95

List Comprehensions

List comprehension offers a shorter syntax when you want to create a new list based on
the values of an existing list.

Syntax

<new-list-name> = [<expression> for <element> in <list-name> if <condition>]

List comprehensions start and end with opening and closing square brackets.

Parameters:

expression: Operation we perform on each value inside the original list
element: A temporary variable we use to store for each item in the original list
list-name: The name of the list that we want to go through
condition: If condition evaluates to True, add the processed element to the new list
new-list-name: New values created which are saved

Note: There can be an optional if statement and additional for clause.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 26 / 95

List Comprehensions
As a simple example, consider the following code that computes square numbers:
nums = [0, 1, 2, 3, 4]

squares = []

for x in nums:

squares.append(x ** 2)

print(squares) # Prints [0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:

nums = [0, 1, 2, 3, 4]

squares = [x ** 2 for x in nums]

print(squares) # Prints [0, 1, 4, 9, 16]

List comprehensions can also contain conditions:

nums = [0, 1, 2, 3, 4]

even_squares = [x ** 2 for x in nums if x % 2 == 0]

print(even_squares) # Prints "[0, 4, 16]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 27 / 95

Dictionaries

A dictionary stores (key, value) pairs, similar to a Map in Java or an object in Javascript.

Syntax

<dict-name> = { <key1>:<value1>, <key2>:<value2>, <key3>:<value3>, ... }
Parameters:

dict-name: The name of a dictionary
key1, key2, key3, · · · : The keys
value1, value2, value3, · · · : The values

Note: Dictionary literals are written within curly brackets { }.

Items of a dictionary can be accessed by referring to its key name, inside square brackets.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 28 / 95

Dictionaries
Adding an item to the dictionary is done by using a new index key and assigning a value

Syntax

<dict-name>[<new-key>] = <new-value>
Parameters:

dict-name: The name of a dictionary
new-key: The key name of the item you want to add
new-value: The corresponding value of the item you want to add

The get() method returns the value of the item with the specified key.

Syntax

<dict-name>.get(<keyname>,<value>)
Parameters:

dict-name: The name of a dictionary
keyname: The key name of the item you want to return the value from
value: Optional. A value to return if the specified key does not exist. Default value None

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 29 / 95

Dictionaries

The pop() method removes the specified item from the dictionary. The value of the
removed item is the return value of the pop() method.

Syntax

<dict-name>.pop(<keyname>, <default-value>)

Parameters:

dict-name: The name of a dictionary
keyname: The key name of the item you want to remove
default-value: A value to return if the specified key do not exist. If this parameter is not specified,
and the item with the specified key is not found, an error is raised

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 30 / 95

Dictionaries

d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data

print(d['cat']) # Get an entry from a dictionary; prints "cute"

print('cat' in d) # Check if a dictionary has a given key; print "True"

d['fish'] = 'wet' # Set an entry in a dictionary

print(d['fish']) # Print "wet"

print(d['monkey']) # KeyError: 'monkey' not a key of d

print(d.get('monkey', 'N/A')) # Get an element with a default; print "N/A"

print(d.get('fish', 'N/A')) # Get an element with a default; print "wet"

del d['fish'] # Remove an element from a dictionary

print(d.get('fish', 'N/A')) # "fish" is no longer a key; print "N/A"

item = d.pop('cat') # Remove the item with key 'cat' from the dictionary

print(item) # Print "cute"

print(d) # Print {'dog': 'furry'}

More Details About Dictionaries

https://docs.python.org/3.5/library/stdtypes.html#dict

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 31 / 95

https://docs.python.org/3.5/library/stdtypes.html#dict

Dictionaries

It is easy to iterate over the keys in a dictionary:

d = {'person': 2, 'cat': 4, 'spider': 8}

for animal in d:

legs = d[animal]

print('A %s has %d legs' % (animal, legs))

Print "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

If you want to access keys and their corresponding values, use the items method:

d = {'person': 2, 'cat': 4, 'spider': 8}

for animal, legs in d.items():

print('A %s has %d legs' % (animal, legs))

Print "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

Dictionary comprehensions: These are similar to list comprehensions, but allow you to
easily construct dictionaries. For example:

nums = [0, 1, 2, 3, 4]

even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}

print(even_num_to_square) # Print "{0: 0, 2: 4, 4: 16}"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 32 / 95

Sets

A set is an unordered collection of distinct elements (i.e., no duplicates).

Syntax

<set-name> = { <value1>, <value2>, <value3>, ...}

Parameters:

set-name: The name of a set
value1, value2, value3, · · · : Set values

Note: Set literals are written within curly brackets { }.

A set is unchangeable (i.e., cannot change the items after the set has been created), and
unindexed. But we can add new items and remove items.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 33 / 95

Sets

The add() method adds a given element to a set if the element is not present in the set.

Syntax

<set-name>.add(<element>)
Parameters:

set-name: The name of a set that we want to add an element to
element: The element that we want to add

The remove() method removes the specified element from the set.

Syntax

<set-name>.remove(<element>)
Parameters:

set-name: The name of a set that we want to remove an element from
element: The element that we want to remove

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 34 / 95

Sets

As a simple example, consider the following:

animals = {'cat', 'dog'}

print('cat' in animals) # Check if an element is in a set; prints "True"

print('fish' in animals) # Print "False"

animals.add('fish') # Add an element to a set

print('fish' in animals) # Print "True"

print(len(animals)) # Number of elements in a set; prints "3"

animals.add('cat') # Adding an element that is already in the set

does nothing

print(len(animals)) # Print "3"

animals.remove('cat') # Remove an element from a set

print(len(animals)) # Print "2"

More Details About Sets

https://docs.python.org/3.5/library/stdtypes.html#set

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 35 / 95

https://docs.python.org/3.5/library/stdtypes.html#set

Sets

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets
are unordered, you cannot make assumptions about the order in which you visit the
elements of the set:

animals = {'cat', 'dog', 'fish'}

for idx, animal in enumerate(animals):

print('#%d: %s' % (idx + 1, animal))

Prints

#1: cat

#2: dog

#3: fish

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set
comprehensions:

from math import sqrt

nums = {int(sqrt(x)) for x in range(30)}

print(nums) # Print "{0, 1, 2, 3, 4, 5}"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 36 / 95

Tuples

A tuple in an (immutable/unchangeable) ordered list of values.

Syntax

<tuple-name> = (<value1>, <value2>, <value3>, ...)

Parameters:

tuple-name: The variable name of a tuple that we want to add element(s) to
value1, value2, value3, · · · : The list of values that we want to add to the tuple

Note: Tuple literals are placed inside parentheses (), separated by commas.

The tuple items can be accessed using index operator ([] – not to be confused with an
empty list). The expression inside the brackets specifies the index.

The first element has index 0, and the last element has index (#elements in the tuple - 1).
Negative index values will locate items from the right instead of from the left.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 37 / 95

Tuples

A tuple is in many ways similar to a list; one of the most important differences is that
tuples can be used as keys in dictionaries and as elements of sets, while lists cannot.

Here is a trivial example:

d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys

t = (5, 6) # Create a tuple

print(type(t)) # Print "<class 'tuple'>"

print(d[t]) # Print "5"

print(d[(1, 2)]) # Print "1"

More Details About Tuples

https://docs.python.org/3.5/tutorial/datastructures.html#tuples-and-sequences

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 38 / 95

https://docs.python.org/3.5/tutorial/datastructures.html#tuples-and-sequences

Parallel Iteration

The zip() method takes iterable or containers and returns a single iterator object, having
mapped values from all the containers.

If the passed iterable or containers have different lengths, the one with the least items
decides the length of the new iterator.

Syntax

zip(<iterator1>, <iterator2>, <iterator3>...)

Parameters:

iterator1, iterator2, iterator3, · · · : Iterator objects that will be joined together

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 39 / 95

Parallel Iteration

fruits = ['apple', 'peach', 'banana', 'guava', 'papaya']

colors = ['red', 'pink', 'yellow', 'green', 'orange']

for name, color in zip(fruits, colors):

print(name, 'is', color)

It prints

apple is red

peach is pink

banana is yellow

guava is green

papaya is orange

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 40 / 95

Functions

Python functions are defined using def keyword.

The return keyword is to exit a function and return a value.

def sign(x):

if x > 0:

return 'positive'

elif x < 0:

return 'negative'

else:

return 'zero'

for x in [-1, 0, 1]:

print(sign(x))

It prints

negative

zero

positive

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 41 / 95

Functions

Normally, when we create a variable inside a function, that variable is local, and can only
be used inside that function.

To create a global variable inside a function, we can use the global keyword.

def assign_word():

global word

word = "cool"

assign_word()

Print "Desmond is really cool"

print("Desmond is really " + word)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 42 / 95

Functions
If you do not know how many arguments that will be passed into your function, add an
asterisk (i.e., *) before the parameter name in the function definition. This way the
function will receive a tuple of arguments, and can access the items accordingly:

def print_kids(*kids):

print("The youngest child is " + kids[2])

Print "The youngest child is John"

print_kids("Desmond", "Peter", "John")

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 43 / 95

Functions
If you do not know how many keyword arguments that will be passed into your function,
add two asterisk: ** before the parameter name in the function definition. This way the
function will receive a dictionary of arguments, and can access the items accordingly:

def print_kid(**kid):

print("His first name is " + kid["fname"] + ", last name is " + kid["lname"])

Print "His first name is Desmond, last name is Tsoi"

print_kid(fname = "Desmond", lname = "Tsoi")

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 44 / 95

Functions

Function can be defined with arguments that have default values.

def hello(name, loud=False):

if loud:

print('HELLO, %s!' % name.upper())

else:

print('Hello, %s' % name)

hello('Bob') # Print "Hello, Bob"

hello('Fred', loud=True) # Print "HELLO, FRED!"

More Details About Functions

https://docs.python.org/3.5/tutorial/controlflow.html#defining-functions

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 45 / 95

https://docs.python.org/3.5/tutorial/controlflow.html#defining-functions

Classes

A class is a user-defined data type from which objects are created. It is created by
keyword class.

Class provides a means of bundling data (i.e., instance variables) and functionality (i.e.,
methods) together.

Instance variables:

They are the variables that belong to an object.
They are always public by default and can accessed using the dot (.) operator.

Methods:

They have an extra first parameter, self, in the method definition.
We do not give a value for this parameter when we call the method, Python provides it.

The instance variables and methods are accessed by using the object.

__init__ method is similar to constructors in Java/C++. Constructors are used to
initializing the instance variables of objects.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 46 / 95

Classes

Define a class with instance variables and methods (and a constructor).

Syntax

class <class-name>:

def __init__(self, <arguments0>):

self.<instance-variable1> = <value1>

self.<instance-variable2> = <value2>

...

def <method1-name>(self, <arguments1>):

<statement1>

<statement2>

...

def <method2-name>(self, <arguments2>):

<statement1>

<statement2>

...

Parameters:

class-name: The name of the
class.
arguments0, arguments1,
arguments2, ...: Method
parameters (i.e., variables)
instance-variable1,
instance-variable2, ...:
Instance variables
value1, value2, ...: Value
assigned to the instance
variables
statement1, statement2, ...:
Python statements

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 47 / 95

Classes

Create an object, call a method, and modify an instance variable

Syntax

<object-name> = <class-name>(<arguments>)

<object-name>.<method-name>(<arguments>)

<object-name>.<instance-variable-name> = <value>

Parameters:

object-name: The name of an object
class-name: The name of a class
arguments: The values that we pass to the constructor/method
method-name: The name of the method
instance-variable-name: The name of an instance variable
value: The value assigned to the instance variable

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 48 / 95

Classes: Public, Private and Protected Members

As mentioned, all members in a Python class are public by default, i.e., any member can
be accessed from outside the class. To restrict the access to the members, we can make
them protected/private.

Protected members of a class are accessible from within the class and also available to its
sub-classes (Will not be covered in this course). By convention, Python makes an/a
instance variable/method protected by adding a prefix (single underscore) to it.

Private members of a class are accessible from with the class only. By convention, Python
makes an instance variable/method private by adding a prefix (double underscore) to it.

Note

“By convention” means the responsible programmer would refrain from accessing and modifying
instance variables prefixed with or from outside its class. But if they do so, still works. :(

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 49 / 95

Example

class Person(object):
def __init__(self, name='Tom',

age=18,
gender='M'):

self.__name = name
self.__age = age
self.__gender = gender

def get_name(self):
return self.__name

def get_age(self):
return self.__age

def get_gender(self):
return self.__gender

def set_name(self, name):
self.__name = name

def set_age(self, age):
self.__age = age

def set_gender(self, gender):
self.__gender = gender

def print(self):
print('--- Print Person ---')
print('Name: ' + self.__name + ' ')
print('Age: ' + str(self.__age) + ' ')
print('Gender: ' + self.__gender)

desmond = Person('Haha', 18, 'M')
print('Name: ' + desmond.get_name())
print('Age: ' + str(desmond.get_age()))
print('Gender: ' + desmond.get_gender())
desmond.set_name('Desmond')
desmond.set_age(19)
desmond.print()

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 50 / 95

Part II

Other Essentials for Writing AI Programs

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 51 / 95

Modules, Packages, Libraries

Modules

A modules in Python is a bunch of related code (functions and
values) saved in a file with the extension .py.

Packages

A package is basically a directory of a collection of modules.

Libaries

A library is a collection of packages.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 52 / 95

Imports

The import keyword is the most common way to access external modules.

Modules are files (.py) that contain functions and values that you can reference in your
program without having to write them yourself.

This is how you get access to machine learning libraries, like numpy, keras, sklearn,
tensorflow, pandas, pytorch, matpotlib, etc.

import is similar to the #include <something.h> in C++.

However, you will usually only need to import a few functions from each of those libraries.

In that case, we can use the from keyword to import only the exact functions we are
using in the code.

Syntax

from [module] import [function/value]

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 53 / 95

Imports

For instance, if we only want to import the sqrt function from the math library, we just
need to do:

from math import sqrt # Import only sqrt function from math module

x = 100

Now, it's imported, we can directly use sqrt to call the math.sqrt()

print(sqrt(x)) # It print 10

There is also the “from [module] import *” syntax which imports all functions. So
the following code works as well.

from math import * # Import ALL functions from math module

x = 100

print(sqrt(x)) # It print 10

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 54 / 95

Imports

However, we should generally avoid importing all functions since we do not know if sqrt
function is from the math library. If we use the import all syntax for multiple libraries, we
may end up with clashes or ambiguity, which decreases the readability of our code and
makes it harder to spot errors.

One such example:

Import ALL functions from math module, including math.sqrt()

from math import *

Import ALL functions from cmath, including cmath.sqrt()

from cmath import *

x = 100

The following will use cmath.sqrt(), which is a different implementation to

math.sqrt()

print(sqrt(x)) # It print 10

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 55 / 95

Imports

One of the most frequently used machine learning libraries is sklearn.

For instance, you may use the K-Means algorithm (we will cover this later in class) to
separate your data into groups.

Let’s look at the scikit-learn documentation
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

KMeans.html#sklearn.cluster.KMeans

and try to understand it.

class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init=10,

max_iter=300, tol=0.0001, verbose=0,

random_state=None, copy_x=True, algorithm='auto')

Each “.” refers to accessing something inside a package.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 56 / 95

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans

Imports

For instance, the following is a simplified layout of sklearn:

sklearn/

__init__.py

discriminant_analysis.py

cluster/

KMeans.py

SpectralClustering.py

affinity_propagation.py

...

linear_model/

bayes.py

logistic.py

neural_network/

multilayer_perceptron.py

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 57 / 95

Imports
import sklearn.cluster means we import all the modules inside the package
sklearn.cluster, including but not limited to (KMeans, SpectralClustering,

affinity propagation.)

import sklearn.cluster.KMeans means we only import the module KMeans inside the
package sklearn.cluster.
If we want to call K-Means on our data, we need to call sklean.cluster.KMeans. But
that’s quite a long function call, so we typically declare the everything but the name of
the actual module in the import section, like so:
Import KMeans module from package sklearn.cluster

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=2, random_state=600)

Notice that we can just use the function name directly in the 2nd line as KMeans.
If our function is particularly long and we do not want to type it out every time, we can
shorten it by using the as keyword to create an alias (a “nickname”) to use in place of
the original (and long) function name.
from sklearn.cluster import KMeans as km

kmeans = km(n_clusters=2, random_state=600)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 58 / 95

Importing and Exporting Data
Your data can come in many forms, which are too exhaustive to list here.

We will introduce how to deal with data in csv (comma-separated-values) form, since that
is fairly common.

In Python, most data manipulation is done with the pandas library.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 59 / 95

Importing Data

To import data from Google Drive, we need to “mount” the directory.

It will ask you to visit a link to allow Golab to access your drive.

from google.colab import drive

drive.mount('/content/drive')

Copy the alphanumeric code and paste it into your notebook.

Afterwards, Drive files will be mounted, which you can view in the sidebar to the left.

To access file training data.csv in the root “My Drive” folder, for instance:

import panads as pd

df = pd.read_csv('/content/drive/My Drive/training_data.csv', index_col=False)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 60 / 95

Exporting Data

To save a file in the root “My Drive” folder, we do

import pandas as pd

Create a pandas.DataFrame object with two columns:

'CustomerId' and 'CanRepayLoan'

output = pd.DataFrame({'CustomerId': np.array([1, 2, 3]),

'CanRepayLoan': np.array([0, 0, 1])})

Convert the pandas.DataFrame object into the csv "loans .csv" and

Export it to the root folder of My Drive

output.to_csv('/content/drive/My Drive/loans.csv', index_col=False)

We will cover NumPy array very soon! :)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 61 / 95

Numpy

NumPy is a short form for Numerical Python and is the core library for numeric and
scientific computing in Python.

It provides high-performance multidimensional array object, and tools for working with
these arrays.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 62 / 95

Arrays
A numpy array is a grid of values, all of the same type, and is indexed by a tuple of
non-negative integers.

The number of dimensions is the rank of the array.

The shape of an array is a tuple of integers giving the size of the array along each
dimensions.

We can initialize numpy arrays from nested Python lists, and access elements using square
brackets.

import numpy as np

a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a)) # Print "<class 'numpy.ndarray'>"
print(a.shape) # Print "(3,)"
print(a[0], a[1], a[2]) # Print "1 2 3"
a[0] = 5 # Change an element of the array
print(a) # Print "[5, 2, 3]"
b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b.shape) # Print "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0]) # Print "1 2 4"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 63 / 95

Arrays

Numpy also provides many functions to create arrays.
import numpy as np

a = np.zeros((2,2)) # Create an array of all zeros

print(a) # Print "[[0. 0.]

[0. 0.]]"

b = np.ones((1,2)) # Create an array of all ones

print(b) # Print "[[1. 1.]]"

c = np.full((2,2), 7) # Create a constant array

print(c) # Print "[[7. 7.]

[7. 7.]]"

d = np.eye(2) # Create a 2x2 identity matrix

print(d) # Print "[[1. 0.]

[0. 1.]]"

e = np.random.random((2,2)) # Create an array filled with random values

print(e) # Might print "[[0.91940167 0.08143941]

[0.68744134 0.87236687]]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 64 / 95

Array Indexing

Expression Description
a[i] Select element at index i, where i is an integer (start counting from 0).

a[-i]
Select the ith element from the end of the list, where n is an integer.
The last element in the list is addressed as -1, the second to last
element as -2, and so on.

a[i:j] Select elements with indexing starting at i and ending at j-1.
a[:] or a[0:] Select all elements in the given axis.
a[:i] Select elements starting with index 0 and going up to index i - 1.

a[i:]
Select elements starting with index i and going up to the last element
in the array.

a[i:j:n] Select elements with index i through j (exclusive), with increment n.
a[::-1] Select all the elements, in reverse order.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 65 / 95

Array Indexing

Similar to Python lists, numpy arrays can be sliced. Since arrays may be
multidimensional, you must specify a slice for each dimension of the array.

import numpy as np

Create the following rank 2 array with shape (3, 4)
[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
Use slicing to pull out the subarray consisting of the first 2 rows
and columns 1 and 2; b is the following array of shape (2, 2):
[[2 3]
[6 7]]
b = a[:2, 1:3]
A slice of an array is a view into the same data, so modifying it
will modify the original array.
print(a[0, 1]) # Prints "2"
b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1]) # Prints "77"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 66 / 95

Array Indexing
You can also mix integer indexing with slice indexing.

However, doing so will yield an array of lower rank than the original array.
import numpy as np

Create the following rank 2 array with shape (3, 4)
[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

Mixing integer indexing with slices yields an array of lower rank,
while using only slices yields an array of same rank as the original array:
row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape) # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape) # Prints "[[5 6 7 8]] (1, 4)"

We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape) # Prints "[2 6 10] (3,)"
print(col_r2, col_r2.shape) # Prints "[[2]

[6]
[10]] (3, 1)"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 67 / 95

Arrays
Expression Shape

arr[:2, 1:] (2, 2)

arr[2] (3,)
arr[2, :] (3,)
arr[2:, :] (1, 3)

arr[:, :2] (3, 2)

arr[1, :2] (2,)
arr[1:2, :2] (1, 2)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 68 / 95

Integer Array Indexing

Integer array indexing allows you to construct arbitrary arrays using the data from another
array.

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

An example of integer array indexing.
The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]]) # Prints "[1 4 5]"

The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # Prints "[1 4 5]"

When using integer array indexing, you can reuse the same
element from the source array:
print(a[[0, 0], [1, 1]]) # Prints "[2 2]"

Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]])) # Prints "[2 2]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 69 / 95

Integer Array Indexing

One useful trick with integer indexing is selecting or mutating one element from each row
of a matrix.

import numpy as np

Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a) # prints "array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10, 11, 12]])"

Create an array of indices
b = np.array([0, 2, 0, 1])
Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[1 6 7 11]"
Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10

print(a) # prints "array([[11, 2, 3],
[4, 5, 16],
[17, 8, 9],
[10, 21, 12]])"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 70 / 95

Boolean Array Indexing
Boolean array indexing lets you pick out arbitrary elements of an array.

Frequently this type of indexing is used to select the elements of an array that satisfy
some condition.

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2) # Find the elements of a that are bigger than 2; this returns a numpy

array of Booleans of the same shape as a, where each slot of bool_idx tells

whether that element of a is > 2.

print(bool_idx) # Prints "[[False False]

[True True]

[True True]]"

We use boolean array indexing to construct a rank 1 array consisting of the elements of a

corresponding to the True values of bool_idx

print(a[bool_idx]) # Prints "[3 4 5 6]"

We can do all of the above in a single concise statement:

print(a[a > 2]) # Prints "[3 4 5 6]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 71 / 95

Datatypes

Every numpy array is a grid of elements of the same type.

Numpy provides a large set of numeric datatypes that you can use to construct arrays.

Numpy tries to guess a datatype when you create an array, but functions that construct
arrays usually also include an optional argument to explicitly specify the datatype.

import numpy as np

x = np.array([1, 2]) # Let numpy choose the datatype

print(x.dtype) # Prints "int64"

x = np.array([1.0, 2.0]) # Let numpy choose the datatype

print(x.dtype) # Prints "float64"

x = np.array([1, 2], dtype=np.int64) # Force a particular datatype

print(x.dtype) # Prints "int64"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 72 / 95

Array Math

Basic mathematical functions operate elementwise on arrays, and are available both as
operator overloads and as functions in the numpy module.

import numpy as np

x = np.array([[1,2],[3,4]], dtype=np.float64)

y = np.array([[5,6],[7,8]], dtype=np.float64)

Elementwise sum; both produce the array

[[6.0 8.0]

[10.0 12.0]]

print(x + y)

print(np.add(x, y))

Elementwise difference; both produce the array

[[-4.0 -4.0]

[-4.0 -4.0]]

print(x - y)

print(np.subtract(x, y))

Elementwise product; both produce the array

[[5.0 12.0]

[21.0 32.0]]

print(x * y)

print(np.multiply(x, y))

Elementwise division; both produce the array

[[0.2 0.33333333]

[0.42857143 0.5]]

print(x / y)

print(np.divide(x, y))

Elementwise square root; produces the array

[[1. 1.41421356]

[1.73205081 2.]]

print(np.sqrt(x))

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 73 / 95

Vector, Matrix and Tensor

Vectors are 1-dimensional arrays of numbers.

Matrices are 2-dimensional arrays of numbers.

Tensors are multi-dimensional arrays of numbers.

They are useful in expressing numerical information, and are extremely useful in
expressing different operations.

So, they are important in statistics, machine learning and computer science.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 74 / 95

Matrix Multiplications

Matrix multiplication is one of the very important operation for artificial intelligence.

Let’s see how to perform matrix multiplication.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 75 / 95

Array Math

Matrix multiplication can be performed using dot function in Python.

dot is available both as a function in the numpy module and as an instance method of
array objects.

import numpy as np

x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])
v = np.array([9,10])
w = np.array([11, 12])

Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))

Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))

Matrix / matrix product; both produce the rank 2 array
[[19 22]
[43 50]]
print(x.dot(y))
print(np.dot(x, y))

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 76 / 95

Numpy Functions
Numpy provides many useful functions for performing computations on arrays, one of the
most useful is sum.

import numpy as np

x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"

print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"

print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 77 / 95

Transpose

Apart from computing mathematical functions using arrays, we frequently need to
reshape or otherwise manipulate in arrays.

The simplest example of this type of operation is transposing a matrix (or two-dimensional
array), to transpose a matrix, simply use the T attribute of an array object.

import numpy as np

x = np.array([[1,2], [3,4]])

print(x) # Print "[[1 2]

[3 4]]"

print(x.T) # Print "[[1 3]

[2 4]]"

Note that taking the transpose of a rank 1 array does nothing:

v = np.array([1,2,3])

print(v) # Print "[1 2 3]"

print(v.T) # Print "[1 2 3]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 78 / 95

Broadcasting
Broadcasting is a powerful mechanism that allows numpy to work with arrays of different
shapes when performing arithmetic operations.
Frequently, we have a smaller array and a larger array, and we want to use the smaller
array multiple times to perform some operation on the larger array.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 79 / 95

Broadcasting - Motivation

import numpy as np

We will add the vector v to each row of the matrix x, storing the result in y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape as x

Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):

y[i, :] = x[i, :] + v

print(y) # It prints "[[2 2 4]
[5 5 7]
[8 8 10]
[11 11 13]]"

The above works, however when the matrix x is very large, computing an explicit loop could be slow.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 80 / 95

Broadcasting - Motivation

Note that adding the vector v to each row of the matrix x is equivalent to forming a
matrix vv by stacking multiple copies of v vertically, then performing elementwise
summation of x and vv. We could implement this as follows:

import numpy as np

We will add the vector v to each row of the matrix x,
storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print(vv) # Prints "[[1 0 1]

[1 0 1]
[1 0 1]
[1 0 1]]"

y = x + vv # Add x and vv elementwise

print(y) # Prints "[[2 2 4]
[5 5 7]
[8 8 10]
[11 11 13]]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 81 / 95

Broadcasting
Numpy broadcasting allows us to perform this computation without actually creating
multiple copies of v.
Consider the following version, using broadcasting:
import numpy as np

We will add the vector v to each row of the matrix x,

storing the result in the matrix y

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1, 0, 1])

y = x + v # Add v to each row of x using broadcasting

print(y) # Prints "[[2 2 4]

[5 5 7]

[8 8 10]

[11 11 13]]"

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broadcasting;
this line works as if v actually had shape (4, 3), where each row was a copy of v, and the sum was
performed elementwise.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 82 / 95

Broadcasting Rules

Broadcasting two arrays together follows these rules:

1. If the arrays do not have the same rank, prepend the shape of the lower rank array with
1s until both shapes have the same length.

2. The two arrays are said to be compatible in a dimension if they have the same size in the
dimension, or if one of the arrays has size 1 in that dimension.

3. The arrays can be broadcast together if they are compatible in all dimensions.

4. After broadcasting, each array behaves as if it had shape equal to the elementwise
maximum of shapes of the two input arrays.

5. In any dimension where one array had size 1 and the other array had size greater than 1,
the first array behaves as if it were copied along that dimension.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 83 / 95

Understanding Broadcasting Rules

Given two arrays A = np.array([1, 2, 3]), and B = np.array([2]). Can we perform
A * B?

1. Do they have the same rank? Yes, rank of A is 1, rank of B is 1.
2. Are they compatible in all dimensions? Yes. Array B has size 1 in that dimension.
3. So, they are compatible.

A = np.array([1, 2, 3])

print(A.ndim) # Print 1

B = np.array([2])

print(B.ndim) # Print 1

print(A * B) # Pring "[2, 4, 6]"

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 84 / 95

Understanding Broadcasting Rules

Given two arrays A = np.array([1, 2, 3]), and B = np.array([[4, 4, 4], [3, 3, 3]]).
Can we perform A * B?

1. Do they have the same rank? No, they do not have the same rank, rank of A is 1, rank of B
is 2. But we can prepend the shape of B (the lower rank array) with 1s until they have the
same length.

2. Are they compatible in all dimensions? Yes. Array A has size 1 in that dimension.
3. So, they are compatible.

A = np.array([1, 2, 3])

print(A.ndim) # Print 1

B = np.array([[4, 4, 4], [3, 3, 3]])

print(B.ndim) # Print 2

print(A*B) # Print [[4 8 12]

[3 6 9]]

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 85 / 95

Understanding Broadcasting Rules
How about the following?

1. Pair 1

A: Dimensions - 5 × 4
B: Dimension - 1

2. Pair 2

A: Dimensions - 5 × 4
B: Dimension - 4

3. Pair 3

A: Dimensions - 15 × 3 × 5
B: Dimensions - 15 × 1 × 5

4. Pair 4

A: Dimensions - 15 × 3 × 5
B: Dimensions - 3 × 5

5. Pair 5

A: Dimensions - 15 × 3 × 5
B: Dimensions - 3 × 1

1. Yes. Result - 5 × 4

2. Yes. Result - 5 × 4

3. Yes. Result - 15 × 3 × 5

4. Yes. Result - 15 × 3 × 5

5. Yes. Result - 15 × 3 × 5

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 86 / 95

Why Numpy Arrays are Better?

Numpy arrays consume less memory than Python List

Numpy arrays are fast as compared to Python List

Numpy arrays are more convenient to use

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 87 / 95

Memory Consumption Between Numpy Arrays and Lists

import numpy as np # Import numpy package
import sys # Import system module

L = range(1000) # Declare a list of 1000 elements

Print size of each element of the list
print("Size of each element of list in bytes: ", sys.getsizeof(L)) # Print 48
Print size of the whole list
print("Size of the whole list in bytes: ", sys.getsizeof(L)*len(L)) # Print 48000

A = np.arange(1000) # Declare a Numpy array of 1000 elements

Print size of each element of the Numpy array
print("Size of each element of the Numpy array in bytes: ", A.itemsize) # Print 8
Print size of the whole Numpy array
print("Size of the whole Numpy array in bytes: ", A.size*A.itemsize) # Print 8000

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 88 / 95

Time Comparison Between Numpy Arrays and Python Lists
import numpy as np # Import required packages

import time as t

size = 1000000 # Size of arrays and lists

list1 = range(size) # Declare lists

list2 = range(size)

array1 = np.arange(size) # Declare arrays

array2 = np.arange(size)

Capture time before the multiplication of Python lists

initialTime = t.time()

Multiply elements of both the lists and stored in another list

resultList = [(a * b) for a, b in zip(list1, list2)]

Calculate execution time, it prints "Time taken by Lists: 0.13024258613586426 s"

print("Time taken by Lists:", (t.time() - initialTime), "s")

Capture time before the multiplication of Numpy arrays

initialTime = t.time()

Multiply elements of both the Numpy arrays and stored in another Numpy array

resultArray = array1 * array2

Calculate execution time, it prints "Time taken by NumPy Arrays: 0.006006956100463867 s"

print("Time taken by NumPy Arrays:", (t.time() - initialTime), "s")

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 89 / 95

Effect of Operations on Numpy Arrays and Python Lists
import numpy as np # Import Numpy package

ls =[1, 2, 3] # Declare a list

arr = np.array(ls) # Convert the list into a Numpy array

try:

ls = ls + 4 # Add 4 to each element of list

except(TypeError):

print("Lists don't support list + int")

Now on array

try:

arr = arr + 4 # Add 4 to each element of Numpy array

print("Modified Numpy array: ",arr) # Print the Numpy array

except(TypeError):

print("Numpy arrays don't support list + int")

Output:
Lists don't support list + int

Modified Numpy array: [5 6 7]

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 90 / 95

Practice Problems (Print the result)

1. How to create array A of size 15, with all zeros?

2. How to find memory size of array A?

3. How to create array B with values ranging from 20 to 60?

4. How to create array C of reversed array of B?

5. How to create 4×4 array D with values from 0 to 15 (from top to bottom, left to right)?

6. How to find the dimensions of array E [[3, 4, 5], [6, 7, 8]]?

7. How to find indices for non-zero elements from array F [0, 3, 0, 0, 4, 0]?

8. How to create 3×3×3 array G with random values?

9. How to find maximum values in array H [1, 13, 0, 56, 71, 22]?

10. How to find minimum values in array H?

11. How to find mean values of array H?

12. How to find standard deviation of array H?

13. How to find median in array H?

14. How to transpose array D?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 91 / 95

Practice Problems (Print the results)
15. How to append array [4, 5, 6] to array I [1, 2, 3]?

16. How to memberwise add, subtract, multiply and divide two arrays J [1, 2, 3] and K [4, 5, 6]?

17. How to find the total sum of elements of array I?

18. How to find natural log of array I?

19. How to use build an array L with [8, 8, 8, 8, 8] using full/repeat function?

20. How to sort array M [2, 5, 7, 3, 6]?

21. How to find the indices of the maximum values in array M?

22. How to find the indices of the minimum values in array M?

23. How to find the indices of elements in array M that will be sorted?

24. How to find the inverse of array N = [[6, 1, 1], [4, -2, 5], [2, 8, 7]] in numpy?

25. How to find absolute value of array N?

26. How to extract the third column (from all rows) of the array O [[11, 22, 33], [44, 55, 66], [77, 88,
99]]?

27. How to extract the sub-array consisting of the odd rows and even columns of P [[3, 6, 9, 12], [15,
18, 21, 24], [27, 30, 33, 36], [39, 42, 45, 48], [51, 54, 57, 60]]?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 92 / 95

Practice Problems (Answers)
1. A = np.zeros(15); print(A)

2. print(A.size * A.itemsize)

3. B = np.arange(20, 61); print(B)

4. C = B[::-1]; print(C)

5. D = np.arange(16).reshape(4, 4); print(D)

6. E = np.array([[3, 4, 5], [6, 7, 8]]); print(E.shape)

7. F = np.array([0, 3, 0, 0, 4, 0]); print(F.nonzero())

8. G = np.random.random((3, 3, 3)); print(G)

9. H = np.array([1, 13, 0, 56, 71, 22]); print(H.max())

10. print(H.min())

11. print(H.mean())

12. print(H.std())

13. print(np.median(H))

14. print(np.transpose(D))

15. I = np.array([1, 2, 3]); I = np.append(I, [4, 5, 6]); print(I)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 93 / 95

Practice Problems (Answers)
16. J = np.array([1, 2, 3]); K = np.array([4, 5, 6]);

print(J + K); print(J - K); print(J * K); print(J / K)

17. print(np.sum(I))

18. print(np.log(I))

19. L = no.full(5, 8); print(L)

L = np.repeat(8, 5); print(L)

20. M = np.array([2, 5, 7, 3, 6]); print(np.sort(M))

21. print(M.argmax())

22. print(M.argmin())

23. print(M.argsort())

24. N = np.array([[6, 1, 1], [4, -2, 5], [2, 8, 7]]); print(np.linalg.inv(N))

25. print(np.abs(N))

26. O = np.array([[11, 22, 33], [44, 55, 66], [77, 88, 99]])

print(O[:,2])

27. P = np.array([[3, 6, 9, 12], [15, 18, 21, 24], [27, 30, 33, 36], [51, 54, 57, 60]])

print(P[::2, 1::2])

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 94 / 95

That’s all!

Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 95 / 95

	blueCrash Course on Python Programming Language
	blueOther Essentials for Writing AI Programs

