
COMP 2211 Exploring Artificial Intelligence

Minimax and Alpha-beta Pruning

Dr. Desmond Tsoi
Department of Computer Science & Engineering

The Hong Kong University of Science and Technology, Hong Kong SAR, China

Overview

In this topic, you will learn how to implement an AI for a 2-player
game, Tic-Tac-Toe.

The AI agent makes use of searching strategies to optimally play
the game.

Brute-force†: Minimax
Minimax with Alpha-Beta Pruning

The same AI strategies can also be applied to other 2-player
games, such as Connect-four, Chess, Checkers, Backgammon, etc. Tic-Tac-Toe

Connect-four Chess Checkers Backgammon

†Brute force refers to straightforward methods of solving a problem.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 2 / 53

Games
Games are the oldest, most well-studied domain in artificial intelligence.
Why?

They are fun.
Easy to represent, rules are clear.
Possible combination of move can be big, e.g., there are ∼ 10154 possible moves in chess.
Like the “real world” in that decisions have to be made and time is important.
Easy to determine when a program is doing well.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 3 / 53

Types of Game

Perfect vs Imperfect information game

Perfect: Player knows all the possible moves of himself and opponent and their results.
Imperfect: Player does not know all the possible moves of the opponent.

Zero-sum vs Non-zero-sum game

Zero-sum: A two person game where one player’s gain is equal to the other player’s loss on
any given play of the game.
Non-zero-sum: A two person game where player’s gain is not necessarily equal to the other
player’s loss on any given play of the game.

Deterministic vs Non-deterministic game

Deterministic: A game that does not involve random choices.
Non-deterministic: A game that involves some random choices.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 4 / 53

Examples

Perfect Information? Zero-sum? Deterministic?

Tic-Tac-Toe Yes Yes Yes

Chess Yes Yes Yes

Monopoly Yes No No

Poker No Yes No

Tic-Tac-Toe

Has perfect information: All players know the moves previously made by all other players.
Is zero-sum, as it involves two players, if player 1 wins, she can score 1 and player 2 who
losses score (-1) and if the game ends in draw, both players score 0
Is deterministic: it is a game that does not involve random choices

Question

Could you explain the others? For example, why chess game has perfect information, is
zero-sum and deterministic?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 5 / 53

Tic-Tac-Toe

Tic-Tac-Toe (also called Noughts and Crosses) is a
paper-and-pencil game for two players, who take turns
marking the spaces in a 3×3 grid.

The player who succeeds in placing three of their marks in a
diagonal, horizontal, or vertical line is the winner.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 6 / 53

AI - Näıve Approach

First, if there is a move that will win the game, play it.

If not, check if there is a move that will block a win from the
opposing player. If so, place your marker in the blocking spot.

Otherwise, just place your marker in a random empty cell.

The AI may not play optimally, i.e., the AI may not achieve
the best results.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 7 / 53

AI - Brute Force Approach
Enumerate all the possible states of the game.

At the very beginning,
a player can choose
any of the 9 available
empty spaces on the
game board.

We can represent
these 9 available
moves using a Tree as
shown on the left.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 8 / 53

AI - Brute Force Approach
1st action: 9 possible choices at the very beginning of the game

2nd action: 9×8 (for each 9 possible first choices, we have 8 possible remaining choices)

3rd action: 9×8×7 (for each 9×8=72 previous choices we have 7 possible remaining
choices)

...

Last action: 9! = 9×8×7× · · ·× 1 = 362880 choices

Total number of states = (9× 8× 7× 6× 5× 4× 3× 2× 1) +

(9× 8× 7× 6× 5× 4× 3× 2) +

(9× 8× 7× 6× 5× 4× 3) +

· · ·
(9× 8) +

(9)

= 986409

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 9 / 53

AI - Brute Force Approach

Questions

1. Is it really to have 986409 possible states in the game?
Answer: No. The game can end before there is no more empty space on the board.

2. How to determine which move to take based on the current game state?
Answer: Use minimax. :)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 10 / 53

Minimax

Minimax is a recursive algorithm which is used to choose an optimal move for a player
assuming that the other player is also playing optimally.

In minimax, the two players are called maximizer (denoted as MAX) and minimizer
(denoted as MIN), and define a scoring method from the standpoint of the MAX player.

The maximizer (the AI of Tic-Tac-Toe game) tries to maximize the score while the
minimizer (the Human player of Tic-Tac-Toe game) tries to minimize the score of AI.

It is called minimax because it helps in minimizing that the other players can force us to
receive.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 11 / 53

Minimax

Steps of the minimax algorithm

1. Construct the complete game tree
2. Apply the utility function to each terminal state.
3. Beginning with the terminal states, determine the utility of the predecessor nodes as follows:

Node is a MIN-node: value is the minimum of the children nodes
Node is a MAX-node: value is the maximum of the children nodes

4. From the initial state (i.e., root of the game tree), MAX chooses the move that leads to the
highest value (minimax decision)

Search the game tree in a Depth-First-Search manner to find the value of the root. Depth-first search is
an algorithm for traversing or searching tree data structures. The algorithm starts at the root node and
explores as far as possible along each branch before backtracking.

Utility function

Numeric values given to terminal states.
For example, in Tic-Tac-Toe, win = +1, loss = -1 and draw = 0.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 12 / 53

Minimax Example - Initial

Terminal states’ utility:
Max wins = 1,
Max loses = -1,
Draw = 0

For maximizier,
initialize each node to
negative infinity, -∞
For minimizier,
initialize each node to
positive infinity, ∞

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 13 / 53

Minimax Example - Step 1

For the leftmost state
in level 2, the
maximizer updates its
value with the
maximum of −∞ and
0, where the value 0 is
obtained from its child
in level 3.

So, its value is changed
from −∞ to 0.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 14 / 53

Minimax Example - Step 2

For the leftmost state
in level 1, the
minimizer updates its
value with the
minimum of ∞ and 0,
where the value 0 is
obtained from its left
child in level 2.

So, its value is changed
from ∞ to 0.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 15 / 53

Minimax Example - Step 3

For the leftmost state
in level 1, the
minimizer updates its
value with the
minimum of 0 and -1,
where the value -1 is
obtained from its right
child in level 2.

So, its value is changed
from 0 to -1.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 16 / 53

Minimax Example - Step 4

For the state in level 0,
the maximizer updates
its value with the
maximum of −∞ and
-1, where the value -1
is obtained from its left
child in level 1.

So, its value is changed
from −∞ to -1.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 17 / 53

Minimax Example - Step 5

For the state in level 0,
the maximizer updates
its value with the
maximum of -1 and
+1, where the value
+1 is obtained from its
middle child in level 1.

So, its value is changed
from -1 to +1.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 18 / 53

Minimax Example - Step 6

For the state in level 2,
the maximizer updates
its value with the
maximum of −∞ and
+1, where the value
+1 is obtained from its
child in level 3.

So, its value is changed
from −∞ to +1.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 19 / 53

Minimax Example - Step 7

For the state in level 1,
the minimizer updates
its value with the
minimum of ∞ and
+1, where the value
+1 is obtained from its
left child in level 2.

So, its value is changed
from ∞ to +1.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 20 / 53

Minimax Example - Step 8

For the state in level 2,
the maximizer updates
its value with the
maximum of −∞ and
0, where the value 0 is
obtained from its child
in level 3.

So, its value is changed
from −∞ to 0.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 21 / 53

Minimax Example - Step 9

For the state in level 1,
the minimizer updates
its value with the
minimum of +1 and 0,
where the value 0 is
obtained from its right
child in level 2.

So, its value is changed
from +1 to 0.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 22 / 53

Minimax Example - Step 10

For the state in level 0,
the maximizer updates
its value with the
maximum of +1 and 0,
where the value 0 is
obtained from its right
child in level 1.

So, its value remains
unchanged, i.e. 0.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 23 / 53

Minimax Example - Done

In the top position, it is
X’s turn.

If X plays in the
top-center, then O can
guarantee a win.

If X plays in the left
center, X will win.

If X plays right center,
then O can force a
draw.

Therefore X will choose
to play in the left
center.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 24 / 53

Minimax Code from Scratch

Draw the current state of the game
def drawboard(board):

print("Current state: \n\n");
for i in range (0,9):

if board[i] == 0: # If value is 0, it's an empty cell
print("- ",end = " ");

if board[i] == 1: # If value is 1, it's the mark of AI
print("X ",end = " ");

if board[i] == -1: # If value is -1, it's the mark of human
print("O ",end = " ");

if (i+1) % 3 == 0: # Move to the next line after printing 3 elements
print("\n");

print("\n"); # Move the next line after printing the game board

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 25 / 53

Check if there is a player wins. If human player wins, return -1.
If AI player wins, return 1. If draw, return 0. If the game is not finished, return 2.
def check_game(board):

There are 8 possible winning patterns.
0, 1, 2 (1st row), 3, 4, 5 (2nd row), 6, 7, 8 (3rd row)
0, 3, 6 (1st col), 1, 4, 7 (2nd col), 2, 5, 8 (3rd col)
0, 4, 8 (Diagonal - top-left to bottom-right)
2, 4, 6 (Diagonal - top-right to bottom-left)
winning_pos = [[0,1,2], [3,4,5], [6,7,8], [0,3,6], [1,4,7], [2,5,8], [0,4,8], [2,4,6]]

Check all possible winning patterns for each player.
for i in range(0,8):

Check whether the cell is non-empty AND the winning positions with the same mark
if board[winning_pos[i][0]] != 0 and\

board[winning_pos[i][0]] == board[winning_pos[i][1]] and\
board[winning_pos[i][0]] == board[winning_pos[i][2]]:
Fulfiled the winning condition, return the mark of player
return board[winning_pos[i][2]];

When reaching here, it means no player wins yet
Check whether there is an empty cell (i.e. with 0).
If so, the game is not finished. Return 2
if any(element == 0 for element in board): return 2
return 0 # Reach here, it means the game draws

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 26 / 53

Obtain the user's input and update the board
def human_turn(board):

pos = input("Enter O's position [1 to 9]: ");
pos = int(pos); # Obtain user input, i.e., where to put the mark

If the cell picked by the human player is non-empty (i.e., non-zero), illegal
if board[pos-1] != 0:

print("Illegal Move!")
exit(0) # Terminate the program

When reaching here, the move is legal and we put -1 (put the mark of human player)
board[pos-1] = -1

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 27 / 53

Perform minimax search
def minimax(board, player):

global count # Refer to the global variable count in main
count += 1 # Make 1 call of minimax already
result = check_game(board) # Check if any player wins
if result != 2: # If the result is not 2, the game is finished,

return result # return 1 if the winner is AI,
otherwise return -1 (i.e., human is the winner)

scores = [] # Create an empty list
for i in range(0,9): # Check all board locations

if board[i] == 0: # If the cell is empty
board[i] = player # Try to put the player's mark at cell i+1
Perform minimax for the next player, and append its score to the list
scores.append(minimax(board,player*-1))
board[i] = 0 # Undo the trial

Return the max score if the player is AI or
return the min score if the player is human
return max(scores) if player == 1 else min(scores)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 28 / 53

This function makes computer's move based on minimax.
def ai_turn(board):

pos = -1; # Initialize pos to illegal value, -1, here
max_value = -2; # Initialize max value so far to -2,

which is a value smaller than the min value possible

for i in range(0,9):
if board[i] == 0: # If the cell is empty

board[i] = 1 # Try to put X at cell i+1
score = minimax(board, -1); # Calculate minimax score for the human player
board[i] = 0 # Undo the trial
if score > max_value: # If we can a better score in the next level,

max_value = score # update the score and pos
pos = i

board[pos] = 1 # Put X at pos, which is the best move

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 29 / 53

Main function
The broad is represented in a single dimensional list
Initalize the board to all zeros (i.e., all empty cells)
board = [0, 0, 0, 0, 0, 0, 0, 0, 0]

print("Computer: X VS. You: O")
first = input("Play first (Y/N) :")
if first == 'Y' or first == 'y': # If first is 'Y'/'y', human wants to play first

player = 1
else:

player = 0

for i in range (0,9): # Play the same. 9 turns in total
if check_game(board) != 2: # If the value returned by check game is not 2,

break # the game is finished

if (i+player) % 2 == 0: # Take turns to play the game
count = 0 # Count the number of minimax calls
ai_turn(board)
print("Count:", count) # Print the count

else:
drawboard(board)
human_turn(board)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 30 / 53

result = check_game(board) # Check the game again

if result==0: # If the result is 0, draw
drawboard(board)
print("Draw!!!")

if result==1: # If the result is 1, AI wins
drawboard(board)
print("AI(X) Wins! Human(O) Loses!")

if result==-1: # If the result is -1, human wins
drawboard(board)
print("Human(O) Wins! AI(X) Loses!")

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 31 / 53

What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN plays optimally, i.e., maximizes
worst-case outcome for MAX.

If MIN does not play optimally, MAX will do even better.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 32 / 53

Disadvantages of Minimax

It has a huge branching factor (the number of children at each node), which makes the
process of reaching the goal state slow.

It can take a long time to evaluate an entire game tree, especially for games such as Go
or Chess

Search and evaluation of unnecessary nodes or branches of the game tree degrades the
overall performance and efficiency of the engine.

Both min and max players have lots of choices to decide from.

Exploring the entire tree is not possible as there is a restriction of time and space.

Solution: Alpha Beta Pruning

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 33 / 53

Observations

The minimax algorithm provides us with the optimal path as expected. But did we really
need to do all that work? No!

Let’s demonstrate it using an example.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 34 / 53

Explanations

Let’s pretend that we are at the middle level stage of finding the minimum value between
6, 5, and 4.

We have already calculated the value of node 6. So, we are AT LEAST guaranteed that
the minimum value between these 3 nodes is <= 6.

On the level above (top level), we are trying to maximize the values. We’ve already
calculated a value of 7 to the left, something that is guaranteed to be 6 or less will
NEVER BE GREATER than 7.

So, we don’t need to go any further with the calculations.

How about the minimum value between 3, 2, 1? Same!

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 35 / 53

Alpha-Beta Pruning

Idea

Prevent ourselves from exploring branches of the game tree that are not worth exploring (because they
will have no effect on the final outcome).

Alpha and Beta

We define two values α and β to store information about the potential of a branch for us
or the opponent.

α-cutoff: Terminate branch because AI already has a better opportunity elsewhere.
β-cutoff: Terminate branch because opponent (human) already has better opportunity
elsewhere.

α is the best (highest) found so far along the path for Max.

β is the best (lowest) found so far along the path for Min.

We can prune a branch if α ≥ β.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 36 / 53

Procedure of Alpha-Beta Pruning

We define two values α and β to store information about the potential of a branch for us
or the opponent.

The variable α and β are used to keep track of the current upper and lower bounds.

Pass current values of α and β of parent down to child nodes during search.

Update values of α and β during search:

For MAX, compare α with the current node value (v). If α < v , α = v , otherwise α remains
unchanged.
For MIN compare β with the current node value (v). If β > v , β = v , otherwise β remains
unchanged.

Prune remaining branches at a node when α ≥ β.

Update values of α and β of parent using the value returned by the child.

If parent node is MAX, compare α with the value of child (v). If α < v , α = v , otherwise α
remain unchanged.
If parent node is MIN, compare β with the value of child (v). If β > v , β = v , otherwise β
remain unchanged.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 37 / 53

Alpha-Beta Pruning Example

At the first step, the
Max player will
initialize α to −∞, and
β to ∞.

We check whether
α ≥ β. It is not and
therefore no pruning is
done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 38 / 53

Alpha-Beta Pruning Example

The Max player moves
from root node to its left
child by passing down
α = −∞ and β = ∞ to
it.

At the left node of the
middle level, we do the
following with the first
terminal value 9.

Node value =
Min(node value, 9),
i.e. Min(∞,9) = 9.
β = Min(β, 9), i.e.
Min(∞, 9) = 9.

We check whether α ≥ β.
It is not and therefore no
pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 39 / 53

Alpha-Beta Pruning Example

The Max player moves
from root node to its
middle child.

At the left node of the
middle level, we do the
following with the second
terminal value 8.

Node value =
Min(node value, 8),
i.e. Min(9,8) = 8.
β = Min(β, 8), i.e.
Min(9, 8) = 8.

We check whether α ≥ β.
It is not and therefore no
pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 40 / 53

Alpha-Beta Pruning Example

The Max player moves
from root node to its
right child.

At the left node of the
middle level, we do the
following with the second
terminal value 7.

Node value =
Min(node value, 7),
i.e. Min(8,7) = 7.
β = Min(β, 7), i.e.
Min(8, 7) = 7.

We check whether α ≥ β.
It is not and therefore no
pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 41 / 53

Alpha-Beta Pruning Example

Now, the algorithm
backtrack to the root,
where the value of the
middle left node, i.e. 7, is
passed to the parent.

At the root node, we do
the following with the
returned value 7.

Node value =
Max(node value, 7),
i.e. Max(−∞, 7) =
7
α = Max(α, 7), i.e.
Max(−∞, 7) = 7

We check whether α ≥ β.
It is not and therefore no
pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 42 / 53

Alpha-Beta Pruning Example
The Max player moves
from root node to its
middle child by passing
down α = 7 and β = ∞
to it.

At the middle node of the
middle level, we do the
following with the first
terminal value 6.

Node value =
Min(node value, 6),
i.e. Min(∞,6) = 6.
β = Min(β, 6), i.e.
Min(∞, 6) = 6.

We check whether α ≥ β.
We notice that α = 7 is
greater than β = 6, and
therefore pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 43 / 53

Alpha-Beta Pruning Example

Now, the algorithm
backtrack to the root,
where the value of the
center node of the middle
layer, i.e. 6, is passed to
the parent.

At the root node, we do
the following with the
returned value 6.

Node value =
Max(node value, 6),
i.e. Max(7, 6) = 7
α = Max(α, 7), i.e.
Max(7, 6) = 7

We check whether α ≥ β.
It is not and therefore no
pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 44 / 53

Alpha-Beta Pruning Example
The Max player moves
from root node to its
right child by passing
down α = 7 and β = ∞
to it.

At the right node of the
middle level, we do the
following with the first
terminal value 3.

Node value =
Min(node value, 3),
i.e. Min(∞,3) = 3.
β = Min(β, 3), i.e.
Min(∞, 3) = 3.

We check whether α ≥ β.
We notice that α = 7 is
greater than β = 3, and
therefore pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 45 / 53

Alpha-Beta Pruning Example

Now, the algorithm
backtrack to the root,
where the value of the
right node of the middle
layer, i.e. 3, is passed to
the parent.

At the root node, we do
the following with the
returned value 3.

Node value =
Max(node value, 3),
i.e. Max(7, 3) = 7
α = Max(α, 3), i.e.
Max(7, 3) = 7

We check whether α ≥ β.
It is not and therefore no
pruning is done.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 46 / 53

Alpha-Beta Pruning Example

The best value for the
root node is 7. The
figure on the left shows
the nodes which are
computed and the
nodes which has never
computed. Hence the
optimal value for the
maximizer is 7 for this
example.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 47 / 53

Alpha-Beta Pruning Code
Replace the minimax function that we defined above with the following:

Perform minimax search with alpha-beta pruning
def minimax_abp(board, player, alpha = -float('inf'), beta = float('inf')):

global count # Refer to the global variable count in main
count += 1 # Make 1 call of minimax abp already
result = check_game(board) # Check if any player wins
if result != 2: # If the result is not 2, the game is finished,

return result # return 1 if the winner is AI,
otherwise return -1 (i.e., human is the winner)

if player == 1:
value = -float('inf')
for i in range(0,9): # Check all board locations

if board[i] == 0: # If the cell is empty
board[i] = player # Try to put the player's mark at cell i+1
Perform minimax with alpha-beta pruning for the next player
and update current value if needed
value = max(value, minimax_abp(board, player*-1, alpha, beta))
alpha = max(alpha, value) # Update alpha with max of current alpha and value
board[i] = 0 # Undo the trial
if alpha >= beta: break

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 48 / 53

else:
value = float('inf')
for i in range(0,9): # Check all board locations

if board[i] == 0: # If the cell is empty
board[i] = player # Try to put the player's mark at cell i+1
Perform minimax with alpha-beta pruning for the next player
and update current value if needed
value = min(value, minimax_abp(board, player*-1, alpha, beta))
beta = min(beta, value) # Update beta with min of current beta and value
board[i] = 0 # Undo the trial
if alpha >= beta: break

Return the max score if the player is AI or
return the min score if the player is human
return value

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 49 / 53

Advantages of Alpha-Beta Pruning

It plays a great role in reducing the number of nodes which are found out by minimax.

When one chance or option is found at the minimum, it stops assessing a move.

This method also helps to improve the search procedure in an effective way.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 50 / 53

Disadvantages of Alpha-Beta Pruning

Alpha-beta prunes large part of search space, but still needs to search all the way to
terminal states.

Note that for some games, the moves must be made in reasonable amount of time.

Approaches to Remedy the Problem

Set a depth limit

Heuristic evaluation function: Estimated desirability or utility of position
⇒ Correlate with the actual chance of winning.

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 51 / 53

Alpha-Beta Pruning

Question

Can you find the optimal move for the Tic-Tac-Toe example using Alpha-Beta Pruning? :)

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 52 / 53

That’s all!

Any questions?

Rm 3553, desmond@ust.hk COMP 2211 (Spring 2022) 53 / 53

