—_—

I T T
LT
SN &= mE EE Ei

P4 ‘"KUST l mnnm POSSIBILIY\!S

T EEAN

COMP 2012H Honors Object-Oriented Programming and
Data Structures

Supplementary Notes: Separate Compilation (Function)

Dr. Desmond Tsoi

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology ‘ “
Hong Kong SAR, China

Rm 3553, desmond@ust.hk COMP 2012H (Fall 2019) 1/21

Part |

Separate Compilation

Rm 3553, desmond@ust.hk

COMP 2012H (Fall 2019) 2/21

Motivation Example: Mutual Recursion

#include <iostream>

/* File: odd-even.cpp */

using namespace std;

bool even(int);

bool odd(int x) { return (x == 0) 7 false

: even(x-1); }

bool even(int x) { return (x == 0) ? true : odd(x-1); }
int main()
{
int x;
cin > x; // Assume x > 0
cout << boolalpha << odd(x) << endl;
cout << boolalpha << even(x) << endl;
return O;
}
Rm 3553, desmond@ust.hk COMP 2012H (Fall 2019) 3/21

Divided We Win

@ The odd-even example consists of 3 functions:
» bool odd(int);
» bool even(int);
> int main();

@ Now instead of putting them all in one .cpp file, we would like to put
each function in a separate .cpp file of its own.
@ There are good reasons for doing that:
» We can then easily reuse a function in another program.

> In a big project, programmers work in a team. After the program
framework is designed in terms of a set of function prototypes, each
programmer writes only some functions.

» If a function needs to be changed, only one file needs to be modified.

@ But how to compile the separate files into one single executable
program?

Rm 3553, desmond@ust.hk COMP 2012H (Fall 2019) 4/21

Solution #1: Separate Compilation

@ In order that each file can be separately compiled on its own, each file
must know the existence of every variable, constant, function that it
uses.

@ All global constants, variables, functions that are used in a file “A”

but are defined in another file “B” must be declared in file “A” before
they are used in the file.

> global constants: repeat their definitions
> external variables: add the keyword extern

» external functions: add their function prototypes. The keyword extern

Solution #1: Separate Compilation — main()

#include <iostream> /* File: main.cpp */

using namespace std;

/* Constant definitions */
const int MAX_CALLS = 100;

/* Global variable definition */
int num_calls;

/* Function declarations */
extern bool odd(int); // "extern" is optional for functions

int main()

. . . . {
is optional since all C++ functions are global anyway. int x;
. . . while (cin >> x) // Assume x > 0
@ The keyword extern in front of a variable/function means that the {
variable/function is global and is defined in another file. num_calls = 0; cout << boolalpha << odd(x) << endl;
. . }
@ Usually put all external declarations at the top of a file. Why?
return O;
}
Rm 3553 desmondouat ik COMP 20121 (7l 2019 5/21 5/
Solution #1: Separate Compilation — even() Solution #1: Separate Compilation — odd()
#include <iostream> /* File: even.cpp */ #include <iostream> /* File: odd.cpp */
#include <cstdlib> #include <cstdlib>
using namespace std; using namespace std;
/* Constant definitions */ /* Constants definitions */
const int MAX_CALLS = 100; const int MAX_CALLS = 100;
/* Global variable declarations */ /* Global variable declarations */
extern int num_calls; // "extern" is a must for global variables extern int num_calls; // "extern" is a must for global variables
/* External function declarations */ /* Function declarations */
extern bool odd(int); // "extern" is optional for functions extern bool even(int); // "extern" is optional for functions
bool even(int x) bool odd(int x)
{ {
if (++num_calls > MAX_CALLS) if (++num_calls > MAX_CALLS)
{ {
cout << "max #calls exceeded\n"; exit(-1); cout << "max #calls exceeded\n"; exit(-1);
} }
return (x == 0) ? true : odd(x-1); return (x == 0) ? false : even(x-1);
} }
72 82

Solution #1: Separate Compilation Procedure 1

@ Compile all the source .cpp files with the following command:
’ g++ -o odd-even main.cpp even.cpp odd.cpp ‘

But this will again compile all files even if you may only change one of
the file.

@ Better to compile them separately:

g-+-+ -c main.cpp

g+-+ -c even.cpp

g++ -c odd.cpp

g—+-+ -o odd-even main.o even.o odd.o

@ The command ’ g++ -c a.cpp | will produce an object file “a.0” for
the source file “a.cpp”.

@ Then the final line ’ g++ -o odd-even main.o even.o odd.o |invokes
the linker to link or merge the separate object files into one single
executable program “odd-even”.

Solution #1: Separate Compilation Procedure 2

compile
Cieze
fleNo =

e Now, if you later modify only “main.cpp”, then you just need to
re-compile “main.cpp” and re-link all object .o files.

g++ -c main.cpp
g++ -0 odd-even main.o even.o odd.o

@ In general, just re-compile those source files that are modified, and
re-link all object files of the project.

9/21 10/ 21
Variable and Function
A definition introduces the name and type of an identifier such as a
variable or a function.
Part [l

Definition vs. Declaration
and Header Files

Rm 3553, desmond@ust.hk COMP 2012H (Fall 2019) 1/21

@ A variable definition requires the compiler to reserve an amount of
memory for the variable as required by its type.

@ A variable may also be initialized in its definition. For instance,
int x = 5; ‘ :

@ A function definition generates machine codes for the function as
specified by its (function) body.

@ In both cases, definition causes memory to be allocated to store the
variable or function.

@ A variable and function identifier must be defined exactly once in the
whole program even if the program is written in separate files.

Rm 3553, desmond@ust.hk COMP 2012H (Fall 2019) 12 /21

Variable and Function

The declaration of a variable or function announces that the variable or
function exists and is defined somewhere — in the same file, or in a
separate file.

@ A variable's declaration consists of the its name and type preceded by
the keyword extern. No initialization is allowed.

@ A function's declaration consists of the its prototype, and may be
optionally preceded by the keyword extern.

@ A declaration does not generate codes for a function, and does not
reserve memory for a variable.

Variable and Function Declaration ..

@ There can be many declarations for a variable or function in the whole

program.

@ An identifier must be defined or declared before it can be used.

@ During separate compilation, the compiler generates necessary

information so that when the linker combines the separate object files,
it can tell that the variable/function declared in a file is the same as
the global variable/function defined in another file, and they should

share the same memory or codes.

Rim 3553, desmondGust i COMP 20121 (Fal 2019) 1/ 16 /21
Header Files Solution #2: Separate Compilation — Header Files
@ In Solut!on#l, you see th.at many global variable or function _ /+ File: my_include.h %/
declarations are repeated in “odd.cpp” and “even.cpp”. That is /* Include system or user-defined header files */
undesirable because: #include <iostream>
. #include <cstdlib>
> We are lazy, and we do not want to repeat writing the same using namespace std;
declarations in multiple files.
» Should a declaration require updating, one has to go through all files /* Constant definitions */
that have the declaration and make the change. const int MAX_CALLS = 100;
» More importantly, maintaining duplicate information in multiple files is /% External function declarations */
€rror-prone. extern bool odd(int); // "extern" is optional for functions
@ The solution is to use .h header files which contains extern bool even(int);
» definitions of global variables and constants
» declarations of global variables and functions
. . . i . /* File: global.h */
@ Header files are inserted to a file by the preprocessor directive /% Global variable definitions */
#include. int num_calls;
#?nclude fiosicream> //"standard 1ib1.'ary header f::Lles /% File: extern.h */
#include "my_include.h" // user-defined header files /* External global variable declarations */
extern int num_calls;
15 /21 16/21

Solution #2: Separate Compilation — main()

#include "my_include.h" /* File: main.cpp */
#include "global.h"

int main()

Solution #2: Separate Compilation — even()

#include "my_include.h" /* File: even.cpp */
#include "extern.h"

bool even(int x)

{
) {
int x; if (++num_calls > MAX_CALLS)
while (cin >> x) // assume x > 0 {
{ cout << "max #calls exceeded\n";
num_calls = 0; exit(-1);
cout << boolalpha << odd(x) << endl; } ’
}
return (x == 0) ? true : odd(x-1);
return 0; }
}
Rm 3553, desmond@ust.hk COMP 2012H (Fall 2019) 17 /21 18 /21
Solution #2: Separate Compilation — odd() Header Files of the Standard C++ Libraries
@ iostream: input/output functions
#include "my_include.h" /* File: odd.cpp */ @ iomanip: input/output manipulation functions
#include "extern.h" i
@ cctype: character functions
bool odd(int x) e.g. int isdigit(char); int isspace(char); int isupper(char);
{
if (++num_calls > MAX_CALLS) @ cstring C string functions:
{ e.g. int strlen(const char []);
cout << "max #calls exceeded\n'; int strcemp(const char [], const char []);
exit(-1); P ! !
¥ @ cmath: math functions
return (x == 0) ? false : even(x-1): e.g. double sqrt(double); double cos(double);
¥ @ cstdlib: commonly used functions
e.g. int system(const char []); int atoi(const char []);
void exit(int); int rand(); void srand(unsigned int);
19/21 20/ 21

That's all!

Any questions?

