
COMP2012 Object-Oriented Programming
and Data Structures

Review: Pointers

Dr. Desmond Tsoi

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology

Hong Kong SAR, China

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 1 / 47

What are Pointers?

A pointer or pointer variable is a
variable that holds a memory
address of another object
(typically another variable) in
memory

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 2 / 47

Declaration of Pointer Variables

If a variable is going to hold an address of another variable, it must
be declared as follows:

Actually, we can treat <type> ∗ as a special type which is pointer
type

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 3 / 47

Recall the syntax for declaring a pointer variable:
<type> ∗ <variable name>;

Examples:

// Declare a pointer that points to an int variable

int* a; // the value of a is garbage but it is NOT nullptr

// Declare a pointer that points to a double variable

double* b; // the value of b is garbage but it is NOT nullptr

// Declare a pointer that points to a char variable

char* c; // the value of c is garbage but it is NOT nullptr

// It is no difference for you to put * close to type OR

// close to variable name

int* d; // the value of d is garbage but it is not nullptr

int *d; // same as above, no difference

We will talk a bit more about nullptr pointer later!

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 4 / 47

Pointer Operator & (Address-Of)

There are two operators associated with pointers. They are & and *
(Note: The * here doesn’t mean multiplication)

The first operator, & is a unary operator (i.e. with single operand)
that returns the memory address of a variable

I Usage: &<variable name>

We can think of & as returning ”the address of”

int var1 = 5;

// pint receives the address of var1

int* pint = &var1;

double var2 = 1.23;

// pdouble receives the address of var2

double* pdouble = &var2;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 5 / 47

Pointer Operator & (Address-Of)(Cont’d)

Graphical representation of last example

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 6 / 47

Example - & (Address-Of)

#include <iostream>

using namespace std;

int main() {

int a, b;

a = 88;

b = 100;

cout << "The address of a is " << &a << endl;

cout << "The address of b is " << &b << endl;

return 0;

}

Output:
The address of a is 0x22ff74

The address of b is 0x22ff70

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 7 / 47

Pointer Operator * (Dereference)

The second operator, *, is the complement
of operator &

It is also a unary operator but accesses the
value located at the address that the
pointer points to

We can think of * as “at address”

int var1 = 5;

int* pint = &var1;

// var2 receives the value of the memory

// location pointed by pint

int var2 = *pint;

// Change the value of the memory location

// pointed by pint to 10, therefore var1 = 10 as well

*pint = 10;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 8 / 47

The Different Uses of Operator *

Do not confuse the use of operator * in
declaring a pointer variable versus the use
of operator * as the dereference operator

Example

// This means to declare a pointer

// variable

int* p;

int i, j = 10;

p = &j;

// This means to dereference the pointer variable p

i = *p;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 9 / 47

Pointer Assignments

As with any variable, you may use a pointer variable on the
right-hand side of an assignment statement to assign its value to
another pointer variable placed on the left-hand side

#include <iostream>

using namespace std;

int main() {

int x;

int *p1, *p2;

p1 = &x; // Address of x is assigned to p1

// Content of p1 (which is the address of x)

// is assigned to p2

p2 = p1;

cout << "The address of x: " << p2 << endl;

return 0;

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 10 / 47

Example of Pointers

#include <iostream>

using namespace std;

int main() {

int value1 = 5, value2 = 15;

int *p1, *p2; // Remember to add * before p2!

p1 = &value1; // p1 = address of value1

p2 = &value2; // p2 = address of value2

*p1 = 10; // value of variable pointed by p1 = 10

*p2 = *p1; // value of variable pointed by p2 =

// value of variable pointed by p1

p1 = p2; // p1 = p2 (pointer value copied)

*p1 = 20; // value of variable pointed by p1 = 20

cout << "value 1 = " << value1 << " / value2 = " << value2;

return 0;

}

Output:

value1 = 10 / value2 = 20

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 11 / 47

Pointer Arithmetic

ONLY TWO arithmetic operations are applicable on pointers. They
are

I Addition
I Subtraction

Therefore, C++ supports four operators for pointer arithmetic
operations. They are +, −, ++ and −−
To understand what occurs in pointer arithmetic, let p1 be an int
pointer with current value of 2000. Also, assume ints are 4 bytes
long, after the expression p1++,

I p1 contains 2004, NOT 2001

The same is true of decrements. For example, assuming that p1 has
the value 2000, after the expression p1--,

I p1 has the value 1996

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 12 / 47

Pointer Arithmetic

Graphical representation of the last example

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 13 / 47

Pointer Arithmetic
Generalizing from preceding example, the following rules govern
pointer arithmetic

I Each time a pointer is incremented, it points to the memory location of
the next element of its base type

I Each time a pointer is decremented, it points to the memory location
of the previous element of its base type

I When applied to character pointers, this will appear as “normal”
arithmetic because characters are always 1 byte long

I All other pointers will increase or decrease by the length of the data
type they point to

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 14 / 47

Pointer Arithmetic (Cont’d)
You are not limited to the increment and decrement operators
For example, you may add or subtract integers to or from pointers

I The expression
p1 = p1 + 2;
makes p1 point to the second element of p1’s type beyond the one it
currently points to

I The expression
p1 = p1 - 2;
makes p1 points to the second element of p1’s type precede the one it
is currently points to

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 15 / 47

Pointer Arithmetic

Graphical representation of the last example

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 16 / 47

Pointer Comparisons
We can compare two pointers in a relational expression
For instance, given two pointers (i.e., pointer variables), p and q, the
following statements are perfectly valid

I if(p < q)

cout << "p points to lower memory than q" << endl;
I if(p > q)

cout << "p points to higher memory than q" << endl;
I if(p == q)

cout << "p points to the same memory as q" << endl;

Generally, pointer comparisons are used when two or more pointers
point to a common objects

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 17 / 47

Multiple Indirection (Pointer to Pointer)

You can have a pointer points to another pointer that points to the
target value

This is called “multiple indirection” or “pointer to pointer”

Pointer to pointer can be confusing. The figure below helps clarify
the concept of multiple indirection

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 18 / 47

Multiple Indirection (Pointer to Pointer) (Cont’d)

As you can see, the value of a normal pointer is the address of the
object that contains the value

In the case of pointer to pointer, the first pointer contains the address
of second pointer, which points to the object that contains the value
desired

A variable that is a pointer to pointer can be declared as:

// An int variable i stores the value 10

int i = 10;

// A pointer variable ptr stores the address of i

int* ptr = &i;

// A pointer variable p_ptr stores the address

// of another pointer variable ptr

int** p_ptr = &ptr;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 19 / 47

Multiple Indirection (Pointer to Pointer)

Multiple indirection can be carried on to whatever extent required,
but more than a pointer to a pointer is rarely needed

In fact, excessive indirection is difficult to follow and prone to
conceptual errors

Seldom use multiple indirections, i.e., more than pointer to pointer! :D

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 20 / 47

Example of Multiple Indirection
#include <iostream>

using namespace std;

int main() {

int a = 80;

int* p = &a;

int** q = &p;

int*** r = &q;

int**** s = &r;

cout << a << " ";

cout << *p << " ";

cout << **q << " ";

cout << ***r << " ";

cout << ****s << endl;

return 0;

}

Output:
80 80 80 80 80

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 21 / 47

Arrays and Pointers

There is a close relationship between pointers and arrays

An array name is actually a constant pointer to the first element of
the array

A constant pointer means we cannot change the content of pointer
variable

#include <iostream>

using namespace std;

int main() {

int a[5];

cout << "Address of a[0]: " << &a[0] << endl;

<< "Name as pointer: " << a << endl;

return 0;

}

Output:
Address of a[0]: 0x22ff50

Name as pointer: 0x22ff50

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 22 / 47

Question ;)

Can we do something like the following?

int a = 10;

int* p = &a;

int A[6] = { 0, 2, 4, 8, 10, 12 };

A = p; // Can we do this?

No! Since A is a constant pointer

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 23 / 47

Arrays and Pointers

// Defines an array of ints

int a = 10;

int* p = &a;

int A[6] = { 0, 2, 4, 8, 10, 12 };

p = A; // Can we do this?

Since array names and pointers are
equivalent, we can also use p as the array
name

For example:
p[3] = 7; or *(p+3) = 7;

is equivalent to
A[3] = 7;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 24 / 47

Arrays and Pointers

Example:

#include <iostream>

using namespace std;

int main() {

int A[6] = { 2, 4, 6, 8, 10, 22 };

int* p = &A[1];

cout << A[0] << " " << p[-1];

cout << " ";

cout << A[1] << " " << p[0];

return 0;

}

Output:
2 2 4 4

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 25 / 47

Dereference Array Pointers

As array name is a constant
pointer, dereference operator (*)
can be used on it

I A[0] is same as *(A + 0)
I A[1] is same as *(A + 1)
I A[2] is same as *(A + 2)

...
I In general, A[n] is equivalent

to *(A + n)

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 26 / 47

Array of Pointers

Pointers may be arrayed like any
other data type

Example:

#include <iostream>

using namespace std;

int main() {

int a = 1, b = 2, c = 3;

int* p[3];

p[0] = &a;

p[1] = &b;

p[2] = &c;

return 0;

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 27 / 47

Pointer with nullptr literal

A pointer with nullptr literal is a pointer that is currently pointing to
nothing

Often pointers are set to predefined pointer literal nullptr to make
them null pointer

Example:

#include <iostream>

using namespace std;

int main() {

int* p = nullptr;

if(!p)

cout << "p is a nullptr pointer" << endl;

return 0;

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 28 / 47

Pointer with nullptr literal (Cont’d)

We will get an error if we try to access a nullptr pointer

Example:

#include <iostream>

using namespace std;

int main() {

int* p;

p = nullptr;

cout << p << endl; // prints 0

cout << &p << endl; // prints address of p

cout << *p << endl; // runtime error!

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 29 / 47

Memory Allocation

If we know prior to the execution of the
program, the amount and type of memory that
we need, we can allocate memory statically
prior to program start-up
(i.e., compilation time)

I We call this static memory allocation

However, we cannot always determine how
much memory we need before our programs
run

I For example: The length of an array or
number of structures may not be known until
your executing program determines what these
values should be

I So, what should we do?
We need dynamic memory allocation

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 30 / 47

Memory Allocation (Cont’d)

In C++, we can request memory from operating system at runtime
and we call this dynamic memory allocation

I An area of memory called the heap (or free store) is available in the
run-time environment to handle dynamic memory allocation

I In C++ programs, we can use operator new to allocate memory from
heap and operator delete to release heap memory

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 31 / 47

Conceptual View of Memory

Heap is a special area of memory which is reserved for dynamic variables

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 32 / 47

Memory Allocation (Cont’d)

Static Memory Allocation
I Memory is allocated at compilation time
I The following fragment allocates memory for x, y and p at compilation

time
F int x, y; // x and y are integers
F int* p; // p is an int pointer variable

I Memory is returned automatically when variable / object goes out of
scope

Dynamic Memory Allocation
I Memory is allocated from heap at running time using new
I Dynamic objects can exist beyond the function in which they were

allocated
I Memory is returned by a de-allocation request using delete operator

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 33 / 47

Dynamic Memory Allocation

The new operator allocates memory from heap and returns a pointer
to it

If all memory is used up and new is unable to allocate memory, then
it returns the value nullptr

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 34 / 47

Dynamic Memory Allocation (Cont’d)

Example:
int* p;

p = new int;

// In a real programming situation, we should always

// check for this memory allocation error

if(p == nullptr) {
cout << "Memory allocation not successful" << endl;

exit(1); // Terminate the program with value = 1,

// it means error! :P

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 35 / 47

De-allocation of Memory

The system has a limited amount of space on the heap. In order to
avoid using it up, it is a good idea to free UNUSED dynamic memory
to the heap
This is IMPORTANT!!!

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 36 / 47

new and delete

#include <iostream>
using namespace std;

int main() {
int* p = new int; // allocate space from heap
if(p == nullptr) { // or if(!p)
cout << "Memory allocation not successful" << endl;
exit(1);

}
*p = 100;
cout << "At " << p << " ";
cout << "is the value " << *p << endl;
delete p;
// Note that it DOES NOT modify p. After executing
// delete p, the value of p is UNDEFINED
return 0;

}

Output:

At 0x3d23f0 is the value 100

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 37 / 47

Allocating and De-allocating Dynamic Arrays

The general forms of allocating dynamic array using new and delete
are shown below

Note that <size> does not have to be a constant. It can be an
expression evaluated at runtime

The [] informs delete that an array is being released

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 38 / 47

Dynamic Array Example

#include <iostream>

using namespace std;

int main() {

int* p;

p = new int[10]; // allocate an array of a 10 ints

if(p == nullptr) { // or if(!p)

cout << "Memory application not successful" << endl;

exit(1);

}

for(int i=0; i<10; ++i) {

p[i] = i;

cout << p[i] << " ";

}

delete [] p; // release the array

return 0;

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 39 / 47

Dynamic Array Example (Cont’d)
Example: Need an array of unknown size
#include <iostream>
using namespace std;

int main() {
int n;
cout << "How many students? ";
cin >> n;
// The size of dynamic array is determined by user-input
int* grades = new int[n];
for(int i=0; i<n; ++i) {
int mark;
cout << "Input mark for student " << (i+1) << " : ";
cin >> mark;
grades[i] = mark;

}
// ...
delete [] grades; // release the array
return 0;

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 40 / 47

Dangling Pointer
Dangling pointers are pointers which do not point to a valid object

They arise when an object is deleted or de-allocated, without
modifying the value of the pointer, so that the pointer still points to
the memory location of the de-allocated memory

For example:

int* p; // p is an int pointer variable

int* q; // q is an int pointer variable

p = new int; // allocate memory from heap

q = p;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 41 / 47

Dangling Pointer (Cont’d)
The last example creates

But then executing

delete p;

p = nullptr;

leaves q dangling.

*q = 10; // illegal

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 42 / 47

Memory Leakage

A memory leak is what happens when
we forgot to return a block of memory
allocated with the new operator or
make it impossible to do so, e.g., losing
all pointers to an allocated memory
location

When this happens, the memory can
never be de-allocated and is lost, i.e.,
never return to the heap

For example

int* p; // p is an int pointer variable

int* q; // q is an int pointer variable

p = new int; // allocate memory from heap

q = new int; // allocate memory from heap

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 43 / 47

Memory Leakage (Cont’d)

The last example creates

But then executing

q = p;

leaves the location previously pointed by q lost

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 44 / 47

Problem of Memory Leakage

Memory leaks can seriously
impact the ability of a program
to complete its task

It may be the case that
subsequent dynamic memory
requests cannot be satisfied
because of insufficient heap
memory

For this reason, memory leaks
should be avoided

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 45 / 47

Further Reading

Read Chapter 8 of ”C++ How to Program” or Chapter 4 of ”C++
Primer” textbook

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 46 / 47

That’s all!

Any question?

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 47 / 47

