- N Y

m . -
3 immﬁlmlﬁinl-.; wrsQmaumimmt

=
=)

AR aaAn
23 5a =m mE

COMP2012 Object-Oriented Programming
and Data Structures

Review: Pointers
Dr. Desmond Tsoi

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology @
Hong Kong SAR, China

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 1/47

What are Pointers?

@ A pointer or pointer variable is a
variable that holds a memory
address of another object
(typically another variable) in
memory

Memory Variables in
Address memory

1000 @ If one variable contains the
1004 address of another variable,
1008 the first variable is said to

point to the second.

1012 1000 %
1016 Pointer / Pointer variable

1020

Men'wory

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

Declaration of Pointer Variables

@ If a variable is going to hold an address of another variable, it must
be declared as follows:

<type>* <variable name>;

<type> *<variable name>; OR

where <type> is the type of the variable address that the
pointer variable can store (e.g. int, char, double, user-
defined type), <variable name> is the name of the pointer
variable

@ Actually, we can treat <type> * as a special type which is pointer
type

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 3/47

@ Recall the syntax for declaring a pointer variable:
<type> * <variable name>;

@ Examples:

// Declare a potinter that points to an int wvariable
int* a; // the value of a is garbage but it is NOT nullptr

// Declare a pointer that points to a double wariable
double* b; // the walue of b is garbage but it ts NOT nullptr

// Declare a pointer that points to a char variable
charx c; // the value of c is garbage but it s NOT nullptr

// It is no difference for you to put * close to type OR

// close to variable name

int* d; // the value of d is garbage but it is not nullptr
int *d; // same as above, mo difference

We will talk a bit more about nullptr pointer later!

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

Pointer Operator & (Address-Of)

@ There are two operators associated with pointers. They are & and *
(Note: The * here doesn't mean multiplication)

@ The first operator, & is a unary operator (i.e. with single operand)
that returns the memory address of a variable

» Usage: &<variable name>

@ We can think of & as returning "the address of”

int varl = 5;

// pint receives the address of wvarl
int* pint = &varil;

double var2 = 1.23;

// pdouble recetves the address of var2
double* pdouble = &var2;

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 5/47

Pointer Operator & (Address-Of)(Cont'd)

@ Graphical representation of last example

Memory Variables in Variables
Address memory Name
1000 3 > varl
1004 1000 pint
1008 1012 > pdouble
1012 var2
1.23
1016
Memory

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021) 6 /47

Example - & (Address-Of)

#include <iostream>
using namespace std;

Memory Variables Variables

int ma:l.n().{ Address in memory Name
int a, b;
a = 88; 1000
b = 100;
’ a
cout << "The address of a is " << &a << endl; 1004 88
cout << "The address of b is " << &b << endl; 1008 100 b
) return O; 1012
Output: Memory

The address of a is 0x22ff74
The address of b is 0x22ff70

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 7/47

Pointer Operator * (Dereference)

Memory Variables in Variable
@ The second operator, *, is the complement address memory Name

of operator & 1000 | & 10 | val

o lti *pi <
It is also a unary operator but accesses the 1000 | pint

value located at the address that the
pointer points to val2

@ We can think of * as “at address”

int varl = 5;
int* pint = &varl;

// var2 recetves the walue of the memory
// location pointed by pint
int var2 = *pint;

// Change the value of the memory location
// pointed by pint to 10, therefore warl = 10 as well
*pint = 10;

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

The Different Uses of Operator *

@ Do not confuse the use of operator * in
declaring a pointer variable versus the use
of operator * as the dereference operator

@ Example

// This means to declare a pointer
// wvariable
int* p;

int i, j = 10
p = &j; O il

// This means to dereference the pointer variable p
1 = *p;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 9/47

Pointer Assignments

@ As with any variable, you may use a pointer variable on the
right-hand side of an assignment statement to assign its value to
another pointer variable placed on the left-hand side
#include <iostream>
using namespace std;

int main() {
int x;
int *pl, *p2;

pl = &x; // Address of z is assigned to pl

// Content of pl (which ts the address of z)
// is assigned to p2

p2 = pi;

cout << "The address of x: " << p2 << endl;
return 0O;

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 10 /47

Example of Pointers

#include <iostream>
using namespace std;

int main() {
int valuel = 5, value2 = 15;
int *pl, *p2; // Remember to add * before p2!

pl = &valuel; // pl = address of waluel
p2 = &value2; // p2 = address of value2
*pl = 10; // value of wvartable pointed by pl = 10
*p2 = *pl; // value of vartiable pointed by p2 =
// value of wvartable pointed by pl

pl = p2; // pl = p2 (pointer wvalue copied)
*pl = 20; // value of wvartable pointed by pl = 20
cout << "value 1 = " << valuel << " / value2 = " << value2;
return 0;

}

Output:

valuel = 10 / value2 = 20

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

Pointer Arithmetic

@ ONLY TWO arithmetic operations are applicable on pointers. They
are
» Addition
» Subtraction
Therefore, C++ supports four operators for pointer arithmetic
operations. They are +, —, ++ and ——
@ To understand what occurs in pointer arithmetic, let p1 be an int

pointer with current value of 2000. Also, assume ints are 4 bytes
long, after the expression p1++,

» pl contains 2004, NOT 2001

@ The same is true of decrements. For example, assuming that p1 has
the value 2000, after the expression p1--,

> pl has the value 1996

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 12 /47

Pointer Arithmetic

@ Graphical representation of the last example

Memory Variables in Variables
Address memory Name
2000
p1-
1996 200
2000 100
2004 300
Memory

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 13 /47

Pointer Arithmetic

@ Generalizing from preceding example, the following rules govern
pointer arithmetic

» Each time a pointer is incremented, it points to the memory location of
the next element of its base type

» Each time a pointer is decremented, it points to the memory location
of the previous element of its base type

» When applied to character pointers, this will appear as “normal”
arithmetic because characters are always 1 byte long

» All other pointers will increase or decrease by the length of the data
type they point to

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021) 14 /47

Pointer Arithmetic (Cont'd)

@ You are not limited to the increment and decrement operators
@ For example, you may add or subtract integers to or from pointers
» The expression
pl =pl + 2;
makes pl point to the second element of pl's type beyond the one it
currently points to
» The expression
pl=pl-2
makes pl points to the second element of pl's type precede the one it
is currently points to

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021) 15 /47

Pointer Arithmetic

@ Graphical representation of the last example

Memory Variables in Variables

Address memory Name
int* p1 = 2004; 2004 p1

p1-2)

1996

2000

2004)

2008

2012 q

Memory

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 16 / 47

Pointer Comparisons

@ We can compare two pointers in a relational expression

e For instance, given two pointers (i.e., pointer variables), p and g, the
following statements are perfectly valid

» if(p < @)

cout << "p points to lower memory than q" << endl;
» if(p > q)

cout << "p points to higher memory than q" << endl;
> if(p == @)

cout << "p points to the same memory as q" << endl;

@ Generally, pointer comparisons are used when two or more pointers
point to a common objects

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 17 /47

Multiple Indirection (Pointer to Pointer)

@ You can have a pointer points to another pointer that points to the
target value

@ This is called “multiple indirection” or “pointer to pointer”

@ Pointer to pointer can be confusing. The figure below helps clarify
the concept of multiple indirection

Pointer variable Variable
Slngle . address value
Indirection
Pointer variable Pointer variable Variable
Multiple
Indirection address address value
8

Multiple Indirection (Pointer to Pointer) (Cont'd)

@ As you can see, the value of a normal pointer is the address of the
object that contains the value

@ In the case of pointer to pointer, the first pointer contains the address
of second pointer, which points to the object that contains the value
desired

@ A variable that is a pointer to pointer can be declared as:

// An int variable i stores the value 10

int i = 10;

I | // A pointer wvariable ptr stores the address of 1

i int* ptr = &i:
| | <type>** <variable name>; | p ;

// A pointer variable p_ptr stores the address
// of another pointer variable ptr
int** p_ptr = &ptr;

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 19 /47

Multiple Indirection (Pointer to Pointer)

@ Multiple indirection can be carried on to whatever extent required,
but more than a pointer to a pointer is rarely needed

@ In fact, excessive indirection is difficult to follow and prone to

conceptual errors

Seldom use multiple indirections, i.e., more than pointer to pointer! :D J

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 20 /47

Example of Multiple Indirection

#include <iostream>
using namespace std;

int main() {

int a

80;

int* p = &a;
int** q = &p;

int*x*x* r

intkskskk

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

= &q;

s = &r;

a << "y
*p << "y
*kq << MM
*kkr << "M

*kxxg << endl;

return O;

Memory
Address

1000

2000
2004

2008
2012

Output:

Variables in
memory

80

1000

2000

2004

Meﬁow

80 80 80 80 80

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021)

2

Variables
Name

a

q

r

21/47

Arrays and Pointers

@ There is a close relationship between pointers and arrays
@ An array name is actually a constant pointer to the first element of
the array

@ A constant pointer means we cannot change the content of pointer
variable

#include <tostream>
using namespace std;

int main() {

int a[5];
cout << "Address of a[0]: " << &a[0] << endl;
<< "Name as pointer: " << a << endl;
return 0;
}
Output:

Address of a[0]: 0x22ff50
Name as pointer: 0x22ff50

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 22 /47

Question ;)

o Can we do something like the following?
int a = 10;
int* p = &a;
int A[6] = { 0, 2, 4, 8, 10, 12 };
A =p; // Can we do this?

@ No! Since A is a constant pointer

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 23 /47

Arrays and Pointers

// Defines an array of ints

:.Lnt a = 10; Memory Variablesin Variables
int* p = &a; Address memory Name

int A[6] = { 0, 2, 4, 8, 10, 12 }; > p

p = A; // Can we do this?

. . 2000 0 A[0]
@ Since array names and pointers are 2004 5 Al]
equivalent, we can also use p as the array 2008 2 A
name 012 | A7 Al3]
o For example: 2016 10 Al4]
pl3] = 7; or x(p+3) = 7; 2020 12 Al5]
is equivalent to i
A[3] =7; Memory

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 24 /47

Arrays and Pointers

@ Example: Memory Variablesin Variables
#include <iostream> Address memory Name

using namespace std; 2004
g P p[-1] P

int main() {

int A[6] = { 2, 4, 6, 8, 10, 22 }; 2000 2 A[0]
int* p = &A[1]; 2004 4 plo]* A[1]
cout << A[0] << ™ " << pl-1]; 2008 6 Al2]
Cou: :: A[l] << " o<< p[0]; 2012 | 8 | A3
ror PE 2016 10 Ald]
return O;

} 2020 22 Al5]

Output: :

2244 Memory

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 25/47

Dereference Array Pointers

@ As array name is a constant
pointer, dereference operator (*)
can be used on it

> A[0] is same as *(A + 0)
» A[1] is same as *(A + 1)
> A[2] is same as *(A + 2)

v

In general, A[n] is equivalent
to *(A + n)

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 26 /47

Array of Pointers

Memory Variablesin Variables

@ Pointers may be arrayed like any Address memory Name
other data type
@ Example: 2000 1
#include <tostream> 2004 2
using namespace std;
2008 3
int main() { :
int a=1, b =2, c = 3;
int* p[3]; 2012 2000 PLC]
pl0] = &a; 2016 2004 p[1]
pl1l = &b; 2008
2] - se, 2020 | <UUc | p[2]
return O; :
} Memory

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 27 /47

Pointer with nullptr literal

@ A pointer with nullptr literal is a pointer that is currently pointing to
nothing

@ Often pointers are set to predefined pointer literal nullptr to make
them null pointer
o Example:

#include <iostream>
using namespace std;

int main() {
int* p = nullptr;
if(!p)
cout << "p is a nullptr pointer" << endl;
return O;

}

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 28 /47

Pointer with nullptr literal (Cont'd)

@ We will get an error if we try to access a nullptr pointer
@ Example:

#include <iostream>
using namespace std;

int main() {
int* p;
p = nullptr;
cout << p << endl; // prints O
cout << &p << endl; // prints address of p
cout << *p << endl; // runtime error!

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021) 29 /47

Memory Allocation

o If we know prior to the execution of the
program, the amount and type of memory that
we need, we can allocate memory statically
prior to program start-up
(i.e., compilation time)

» We call this static memory allocation

@ However, we cannot always determine how
much memory we need before our programs
run

» For example: The length of an array or
number of structures may not be known until
your executing program determines what these
values should be

> So, what should we do?

We need dynamic memory allocation

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

30/47

Memory Allocation (Cont'd)

@ In C++, we can request memory from operating system at runtime
and we call this dynamic memory allocation

> An area of memory called the heap (or free store) is available in the
run-time environment to handle dynamic memory allocation

» In C++ programs, we can use operator new to allocate memory from
heap and operator delete to release heap memory

Rm 3553, desmond@ust.hk

COMP2012 (Spring 2021) 31/47

Conceptual View of Memory

code for functions

PROGRAM MEMORY

program heap
gIObaI (dynamic memory) = E stack

DATA MEMORY

Heap is a special area of memory which is reserved for dynamic variables

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

Memory Allocation (Cont'd)

@ Static Memory Allocation

» Memory is allocated at compilation time
» The following fragment allocates memory for x, y and p at compilation
time
* int x, y; // x and y are integers
* int* p; // p is an int pointer variable
» Memory is returned automatically when variable / object goes out of
scope

@ Dynamic Memory Allocation

» Memory is allocated from heap at running time using new

» Dynamic objects can exist beyond the function in which they were
allocated

» Memory is returned by a de-allocation request using delete operator

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 33/47

Dynamic Memory Allocation

<type>" <variable name> = new <type>;

pointer variable can store (e.g. int, char, double, user-
defined type), <variable name> is the name of the pointer
variable

I
I
I
I where <type> is the type of the variable address that the
I
I

@ The new operator allocates memory from heap and returns a pointer
to it

o If all memory is used up and new is unable to allocate memory, then
it returns the value nullptr

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 34 /47

Dynamic Memory Allocation (Cont'd)

o Example:
int* p;
p = new int;

; k=

Un-initialized
int variable

// In a real programming situation, we should always
// check for this memory allocation error

if(p == nullptr) {

cout << "Memory allocation not successful" << endl;

exit(1); // Terminate the program with value = 1,

// it means error! :P

Rm 3553, desmondQust.hk COMP2012 (Spring 2021)

35/47

De-allocation of Memory

I
I delete <pointer variable name=>;
I
I
I

where <pointer variable name> is the variable name of a
pointer variable stores an address of location in heap

@ The system has a limited amount of space on the heap. In order to
avoid using it up, it is a good idea to free UNUSED dynamic memory
to the heap
This is IMPORTANT!!!

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 36 /47

new and delete

#include <iostream>
using namespace std;

int main() {
int* p = new int; // allocate space from heap
if(p == nullptr) { // or if(!p)
cout << "Memory allocation not successful" << endl;

exit(1);
}
*p = 100;
cout << "At " << p << "My
cout << "is the value " << *p << endl;
delete p;

// Note that it DOES NOT modify p. After ezecuting
// delete p, the value of p ts UNDEFINED
return O;

3

Output:
At 0x3d23f0 is the value 100

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

Allocating and De-allocating Dynamic Arrays

@ The general forms of allocating dynamic array using new and delete
are shown below

<type>" <pointer variable name> = new <type>[<size>];
delete [] <pointer variable name>;

where <type=> is the type of data stored in an array,
<pointer variable name=> is the variable name of a pointer
variable, which stores an address of location in heap,
<size> is the number of elements needs to be allocated

@ Note that <size> does not have to be a constant. It can be an
expression evaluated at runtime

@ The [] informs delete that an array is being released

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 38/47

Dynamic Array Example

#include <iostream>
using namespace std;

int main() {
int* p;
p = new int[10]; // allocate an array of a 10 ints
if(p == nullptr) { // or if(/p)
cout << "Memory application not successful" << endl;

exit(1);
}
for(int i=0; i<10; ++i) {
plil = i;
cout << pl[i] << "™ 'y
}
delete [] p; // release the array
return O;
}

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021)

Dynamic Array Example (Cont'd)

@ Example: Need an array of unknown size

#include <tostream>
using namespace std;

int main() {

3

int n;
cout << "How many students? ";
cin >> n;
// The size of dynamic array s determined by user-input
int* grades = new int[n];
for(int i=0; i<mn; ++i) {
int mark;
cout << "Input mark for student " << (i+1) << " : ",
cin >> mark;
grades[i] = mark;
}
/.
delete [] grades; // release the array
return 0;

Rm 3553, desmond®@ust.hk COMP2012 (Spring 2021) 40 /47

Dangling Pointer
@ Dangling pointers are pointers which do not point to a valid object
@ They arise when an object is deleted or de-allocated, without
modifying the value of the pointer, so that the pointer still points to
the memory location of the de-allocated memory
@ For example:

int* p; // p s an int pointer variable
int* q; // q is an int pointer wvariable
p = new int; // allocate memory from heap
qQ=P;

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 41 /47

Dangling Pointer (Cont'd)
@ The last example creates

p T
q —

@ But then executing
delete p;
p = nullptr;
leaves q dangling.
*q = 10; // illegal
Location does not
belong to the program

q | — ?

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 42 /47

Memory Leakage

@ A memory leak is what happens when
we forgot to return a block of memory
allocated with the new operator or
make it impossible to do so, e.g., losing
all pointers to an allocated memory
location

@ When this happens, the memory can
never be de-allocated and is lost, i.e.,
never return to the heap

&

o For example
int* p; // p is an int pointer variable
int* q; // q is an int pointer wvariable
p = new int; // allocate memory from heap
q = new int; // allocate memory from heap

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021) 43 /47

Memory Leakage (Cont'd)

@ The last example creates

@ But then executing

q = Pp;

leaves the location previously pointed by q lost

P

q

/’

Rm 3553, desmond@ust.hk

COMP2012 (Spring 2021)

Location cannot be
accessed by the
program

44 /47

Problem of Memory Leakage

@ Memory leaks can seriously
impact the ability of a program
to complete its task

@ It may be the case that
subsequent dynamic memory
requests cannot be satisfied
because of insufficient heap
memory

@ For this reason, memory leaks
should be avoided

Rm 3553, desmondQust.hk COMP2012 (Spring 2021) 45 /47

Further Reading

@ Read Chapter 8 of "C++ How to Program” or Chapter 4 of " C++
Primer” textbook

Rm 3553, desmond@ust.hk COMP2012 (Spring 2021)

That’s all!
Any question?

