
COMP 2012 Midterm Exam - Fall 2017 - HKUST

Date: Nov 4th, 2017 (Saturday)
Time Allowed: 2 hours, 2:00 – 4:00 pm
Instructions: 1. This is a closed-book, closed-notes examination.

2. There are 7 questions on 30 pages (including this cover page, 3 appendix
pages, and 3 blank pages at the end).

3. Write your answers in the space provided.

4. All programming codes in your answers must be written in the ANSI C++
version as taught in the class.

5. For programming questions, you are NOT allowed to define additional struc-
tures, or use global variables nor any library functions not mentioned in the
questions. But you may use the STL functions given in the Appendix.

Student Name

Student ID

Email Address

Seat Number

Problem Topic Score

1 True or False / 10

2 Const-ness / 10

3 Order of Construction and Destruction / 10

For T.A. 4 Class Basics / 15

Use Only 5 STL Algorithm / 9

6 Class Template and Operator Overloading / 22

7 Classes and Objects / 24

Total / 100

1

Problem 1 [10 points] True or False

Indicate whether the following statements are true or false by circling T or F. You get 1.0

point for each correct answer, −0.5 for each wrong answer, and 0.0 if you do not answer.

(a)T F To define an inline member function for a class, you can define it in a different file than

the file containing the definition.

(b)T F C++ compiler will NOT place a function call with the body of the called recursive

function.

(c)T F The function parameter declarations “const Person* t” and “Person const* t” are equiv-

alent in effect.

(d)T F There is NO compilation error in the following code segment.

class A {
public:
int x;
A() { x = 1; }

};

int main() {
A obj = { 2 };
return 0;

}

(e)T F There is NO compilation error in the following code segment.

class A {
private:
int x;

public:
A() { x = 1; }
A(const A a) { x = a.x; }

};

int main() {
A obj1;
A obj2(obj1);
return 0;

}

2

(f)T F If constructors do not perform implicit conversions, you can create an array of objects

only if the class has a default constructor.

(g)T F Increment operator (i.e ++) can only be implemented as member functions.

(h)T F A class cannot declare a member function of another class as friend.

(i)T F The friend declaration can be placed anywhere in the class declaration and it is not

affected by the access control keywords.

(j)T F Class templates can have default arguments for type or value parameters. For example:

template <typename T = int, int size = 10>
class Array {};

3

Problem 2 [10 points] Const-ness

In the following program, for the 10 statements ending with following comment:

/* Error: Yes / No / Don't know */

decide whether the statement is syntactically INCORRECT - that is, it will produce compi-

lation error(s). Circle “Yes” if it will give compilation error and “No” otherwise.

You get 1 point for each correct answer, -0.5 for each wrong answer, and 0.0 if you do not

answer by circling “Don’t know”.

#include <iostream>
using namespace std;

void mystery1(int* p) { cout << "mystery1" << endl; }
void mystery2(const int* p) { cout << "mystery2" << endl; }
void mystery3(int const* p) { cout << "mystery3" << endl; }
void mystery4(int* const p) { cout << "mystery4" << endl; }
void mystery5(int& p) { cout << "mystery5" << endl; }
void mystery6(const int& a) { cout << "mystery6" << endl; }

void mystery7(int a, const double b) { cout << "mystery7" << endl; }
const int mystery8(int a, double b) { cout << "mystery8" << endl; }

int main() {
const int a(20);

mystery1(&a); /* Error: Yes / No / Don't know */
mystery2(&a); /* Error: Yes / No / Don't know */
mystery3(&a); /* Error: Yes / No / Don't know */
mystery4(&a); /* Error: Yes / No / Don't know */
mystery5(a); /* Error: Yes / No / Don't know */
mystery6(a); /* Error: Yes / No / Don't know */

/* Hint for the following questions.
int func(int a, const double b);
int (*p)(int, double) = func;
- Can you pass a double value to const double b? */

void(*p1)(int, double) = mystery7; /* Error: Yes / No / Don't know */
void(*p2)(int, const double) = mystery7; /* Error: Yes / No / Don't know */
const int(*p3)(int, double) = mystery8; /* Error: Yes / No / Don't know */
const int(*p4)(const int, double) = mystery8; /* Error: Yes / No / Don't know */

return 0;
}

4

Problem 3 [10 points] Order of Construction and Destruction

#include <iostream>
using namespace std;

class A {
public:

A() { cout << "A's default contor\n"; }
A(int a) { cout << "A's conversion contor\n"; }
˜A() { cout << "A's destor\n"; }

};

class B {
public:

B() { cout << "B's default contor\n"; }
B(const B& b) { cout << "B's copy contor\n"; }
B(A a) { cout << "B's conversion contor\n"; }
˜B() { cout << "B's destor\n"; }

};

class C {
private:

A* ap; B b1, b2; // Three data members here
public:

C() : b1(), b2(b1) { ap = new A; cout << "C's default contor\n"; }
˜C() { cout << "C's destor\n"; delete ap; }

};

class D {
private:

A a; B b; C* cp; // Three data members here
public:

D(): a(10), cp(new C) { b = B(); cout << "D's default contor\n";
}

˜D() { delete cp; }
};

int main() {
cout << "--- Construct B object ---\n";
B obj1(10);
cout << "--- Construct D object ---\n";
D obj2;
cout << "--- Before return ---\n";
return 0;

}

5

What are the outputs of the above program? Write the outputs below. Assume the compiler

DOES NOT do any optimization.

Answer:

--- Construct B object ---

--- Construct D object ---

--- Before return ---

6

Problem 4 [15 points] Class Basics

The following program contains 6 ERRORS (syntax error, logical errors - including unini-

tialized data member, etc.). Study the program carefully, identify all the errors by writing

down the line number where an error occurs, and explain why it is an error.

1 #include <iostream>
2 using namespace std;
3

4 class A {
5 private:
6 int a;
7 int b;
8 int* p = NULL;
9 const double PI;

10 int& ref;
11

12 public:
13 A(int a, int bb, int c) : a(a), PI(3.14159), ref(c) {
14 int b = bb;
15 p = new int[10];
16 }
17

18 A(int a, int b) : PI(3.14159) {
19 this->a = a;
20 this->b = b;
21 p = new int;
22 }
23

24 ˜A() {
25 delete [] p;
26 }
27 };
28

29 int main() {
30 A** p = new A*[3];
31

32 A obj1;
33 A obj2(1, 2, 3);
34 A obj3(4, 5);
35 p[0] = &obj1;
36 p[1] = &obj2;
37 p[2] = &obj3;
38

39 return 0;
40 }

7

Error# Line# Explanation

1

2

3

4

5

6

8

Problem 5 [9 points] STL Algorithm

(a) [3 points] Given the following prototype of the STL max element algorithm,

template <typename ForwardIterator>

ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

Parameters:

• first, last: Input iterators to the initial and final positions of the sequence to

compare.

Implement the algorithm so that it returns an iterator pointing to the element with the

largest value in the range [first,last) by comparing elements using operator<. An el-

ement is largest if no other element does not compare less than it. If more than one

element fulfills this condition, the iterator returned points to the first of such elements.

Answers:

9

(b) [4 points] Write a class called Student which will be put in a file called “Student.h”

that has the following:

• A private data member, name, of type string

• A private data member, cgpa, of type double

• A constructor

It initializes its objects with arguments name and cgpa

• A public const member function, getName

It returns the data member name.

• A public const member function, getCGPA

It returns the data member cgpa.

• An overloaded operator function, operator<

It accepts an object of Student type as argument and it checks whether the cgpa of

the given object is larger than its cgpa or not. If so, return true, otherwise return

false.

Answers:

10

(c) [2 points] Complete the following program in the space provided after the “TO DO”

comment lines so that it will run and give the output below:

Student with the highest CGPA: Wallace (4.25)

#include <iostream>
#include <vector>
#include <algorithm>
#include "Student.h"
using namespace std;

int main()
{

vector<Student> students;
students.push_back(Student("Ken", 3.2));
students.push_back(Student("Wallace", 4.25));
students.push_back(Student("John", 2.1));

/*
* TO-DO: Using max_element from part (a), find the student with the
* highest CGPA stored in the STL vector container, students.
*
*********************** CODE BEGINS ***********************/

/*********************** CODE ENDS ************************/

cout << "Student with the highest CGPA: " << (*it).getName()
<< " (" << (*it).getCGPA()
<< ")" << endl;

return 0;
}

11

Problem 6 [22 points] Class Template and Operator Overloading

#include <iostream> /* File "SpecialContainer.h" */
#include <list>
#include <algorithm>
using namespace std;

template <typename T>
class SpecialContainer {
private:

list<T> s; // A list container that stores elements

public:
typedef typename list<T>::iterator listiterator;

// Construct an SpecialContainer object and add all the elements of arr to s.
SpecialContainer(const T arr[], int num); // Conversion constructor

// Create a new SpecialContainer with a copy of all the elements in s, placed them
// at the front and element e at the back. Return the new SpecialContainer.
SpecialContainer operator+(const T& e);

// Find element e in the container s.
// If it exists, create a new SpecialContainer with a copy of all the elements in s
// except e and return it. Otherwise, return the current SpecialContainer.
SpecialContainer operator-(const T& e);

// Add element e to the current container and return it back.
SpecialContainer& operator+=(const T& e);

.
// Remove element e from the current container and return it back.
SpecialContainer& operator-=(const T& e);

// Shift n elements to the left of the list.
// For example: s = { 1, 2, 3 }, n = 2, list s would change to { 3, 1, 2 }.
void operator<<(int n);

// Shift n elements to the right of the list.
// For example: s = { 1, 2, 3 }, n = 2, list s would change to { 2, 3, 1 }.
void operator>>(int n);

// If i is in the legal index range of container, return the ith element.
// Otherwise, output "op[]: invalid dimension!" and terminate the program.
T& operator[](int i);

// Overload the insertion operator<< for the SpecialContainer class
// Note: Define listiterator in your function with
// "typedef typename list<T>::iterator listiterator;" and use it.
template <typename S>
friend ostream& operator<<(/* complete the prototype as well */);

};

#include "SpecialContainer.cpp"

12

Implement the 9 undefined member functions of the above template class ‘SpecialContainer’

in “SpecialContainer.cpp” so that they will work with the testing program below to pro-

duce the following output.

#include "SpecialContainer.h" /* File: "test-specialcontainer.cpp" */

int main() {
int arr[] = { 10, 20, 50, 5 };
SpecialContainer<int> container(arr, 4);
container += 60;
container += 16;
cout << "Original: \t\t\t\t" << container;

container << 3;
cout << "After left shifting by 3:\t\t" << container;
container >> 4;
cout << "After right shifting by 4:\t\t" << container;
container >> 101;
cout << "After right shifting by 101:\t\t" << container;

container -= 30;
cout << "After removing 30:\t\t\t" << container;
container -= 20;
cout << "After removing 20:\t\t\t" << container;

container[2] = 99;
cout << "After changing container[2] to 99:\t" << container;
container[10] = 99;
cout << "After changing container[10] to 111:\t" << container;

return 0;
}

Output of the program:

Original: 10, 20, 50, 5, 60, 16

After left shifting by 3: 5, 60, 16, 10, 20, 50

After right shifting by 4: 16, 10, 20, 50, 5, 60

After right shifting by 101: 10, 20, 50, 5, 60, 16

After removing 30: 10, 20, 50, 5, 60, 16

After removing 20: 10, 50, 5, 60, 16

After changing container[2] to 99: 10, 50, 99, 60, 16

op[]: invalid dimension!

13

Hint: You may use previously defined overloaded operator functions to define other ones.

Also, you must use listiterator defined in the class in your implementation.

Answer: /* File: “SpecialContainer.cpp” */

14

/*** Continue Your Answer For Problem 6 On This Page ***/

15

/*** Continue Your Answer For Problem 6 On This Page ***/

16

Problem 7 [24 points] Classes and Objects

(a) [2 points] The following shows a typical class definition for a Book. Complete the missing

parts in the space provided under Part(a)(i)-(a)(ii) “ADD YOUR CODE HERE” by declaring

(1) the non-member function, operator<< as a friend of Book, (2) declaring equality

operator operator== for the Book class.

#ifndef BOOK_H /* Book.h */
#define BOOK_H

#include <iostream>
#include <string>
using namespace std;

class Book {
friend class ShoppingCart;

// Make the non-member function, operator<< a friend of Book class
// Part (a)(i) - ADD YOUR CODE HERE

private:
string title; // Book title
string isbn; // ISBN number of the book
double price; // Price of the book

public:
Book(string title = "", string isbn = "", double price = 0.0);

// Declare equality operator, operator==, for the Book class
// Part (a)(ii) - ADD YOUR CODE HERE

};

#endif /* BOOK_H */

17

(b) [4 points] Provide the implementation of the overloaded operators, (1) operator== and

(2) operator<< for Book in the space provided under Part(b)(i)-(b)(ii) “ADD YOUR CODE

HERE”.

• Assume the result of equality test between Books is based on all the data mem-

bers. For equality test of price, you can take absolute value of the price differ-

ence between two Book objects. If the value is less than the value returned by

numeric limits<double>::epsilon(), return true. Otherwise, return false.

• The output format of a Book object is as follows:

<book title>, <isbn number>, $<price>

The following shows a sample output of a book:

C++ How to Program, 978-0134448237, $325

#include <cmath> /* File "Book.cpp" */
#include <limits>
#include "Book.h"
using namespace std;

Book::Book(string title, string isbn, double price) {
this->title = title;
this->isbn = isbn;
this->price = price;

}

// Implement the member function operator==
// Part (b)(i) - ADD YOUR CODE HERE

// Implement the non-member function operator<<
// Part (b)(ii) - ADD YOUR CODE HERE

18

(c) [18 points] Now suppose you need to develop an e-Commerce shopping cart using the

Book class defined in part (a) and (b). To accomplish the task, a C++ class named

ShoppingCart has been defined for you as follows:

#ifndef SHOPPINGCART_H /* ShoppingCart.h */
#define SHOPPINGCART_H

#include "Book.h"
using namespace std;

class ShoppingCart {
private:
Book** books; // An array of pointers to books
int capacity; // The capacity of the pointer array
int numBooks; // The number of book objects pointed by the book array

public:
ShoppingCart(); // Default constructor
ShoppingCart(const ShoppingCart& sc); // Copy constructor
˜ShoppingCart(); // Destructor

// Add a book to the shopping cart
// Note: The book object is passed by value
void addBook(Book book);

// Remove a book from the shopping cart
// Note: The book object is passed by value
bool removeBook(Book book);

double payAmount() const; // The pay amount of all the books

// Implement operator= in a way that it can handle self-assignment properly
ShoppingCart& operator=(const ShoppingCart& cart);

};

#endif /* SHOPPINGCART_H */

Assume the member functions

ShoppingCart()

∼ShoppingCart()
double payAmount() const

have been implemented in “ShoppingCart.cpp” as shown on the next page.

19

#include "ShoppingCart.h"

ShoppingCart::ShoppingCart() {
books = new Book*[5];
for(int i=0; i<5; i++)
books[i] = NULL;

capacity = 5;
numBooks = 0;

}

ShoppingCart::˜ShoppingCart() {
for(int i=0; i<numBooks; i++)
delete books[i];

delete [] books;
}

double ShoppingCart::payAmount() const {
double total = 0;
for(int i=0; i<numBooks; i++)
total += books[i]->price;

return total;
}

// *** 4 missing member functions: ***
// - ShoppingCart(const ShoppingCart& sc)
// - void addBook(Book book)
// - bool removeBook(Book book)
// - ShoppingCart& operator=(const ShoppingCart& cart)

Your task is to complete the remaining 4 member functions that satisfy the following

requirements:

• Perform deep copy in the copy constructor and assignment operator function, i.e.

operator=.

• For addBook, duplicate the book object and link it to the array. If the number of

books in the shopping cart reaches the capacity of the shopping cart, replace the

original array with a new array of size doubling the original capacity and move all

the items over.

• For removeBook, check whether the book is in the shopping cart. If not, return false.

Otherwise, remove the book, move all the books backwards, decrease the number of

books in the shopping cart by 1, and return true.

• The given testing program “main.cpp” will compile, run, and produce the output

on the next page.

20

#include "Book.h"
#include "ShoppingCart.h"

int main() {
ShoppingCart cart1;
Book book1("C++ How to Program", "978-0134448237", 325);
Book book2("Introduction to Java Programming", "978-0132936521", 350);
Book book3("Harry Potter and the Philosopher's Stone", "978-0747549550", 420);
cout << book1 << endl << book2 << endl << book3 << endl;

cart1.addBook(book1);
cart1.addBook(book2);
cart1.addBook(book3);
cout << "Pay amount for all books in cart1: $" << cart1.payAmount() << endl;

ShoppingCart cart2(cart1);
ShoppingCart cart3;
cart3 = cart1;

cart1.removeBook(book2);
cout << "After removeBook, pay amount for all books in cart1: "

<< cart1.payAmount() << endl;

cout << "Pay amount for all books in cart2: $" << cart2.payAmount() << endl;
cout << "Pay amount for all books in cart3: $" << cart3.payAmount() << endl;

return 0;
}

Output of the testing program:

C++ How to Program, 978-0134448237, $325

Introduction to Java Programming, 978-0132936521, $350

Harry Potter and the Philosopher's Stone, 978-0747549550, $420

Pay amount for all books in cart1: $1095

After removeBook, pay amount for all books in cart1: 745

Pay amount for all books in cart2: $1095

Pay amount for all books in cart3: $1095

21

Answer: /* File: “ShoppingCart.cpp” */

Implement all the missing member functions of the class ShoppingCart here:

22

/*** Continue Your Answer For Problem 7 On This Page ***/

23

/*** Continue Your Answer For Problem 7 On This Page ***/

-------------------- END OF PAPER --------------------

24

Appendix

(1) STL Sequence Container: Vector

template <class T, class Alloc = allocator<T> > class vector;

Defined in the standard header vector.

Description:

Vectors are sequence containers representing arrays that can change in size. Just like ar-

rays, vectors use contiguous storage locations for their elements, which means that their

elements can also be accessed using offsets on regular pointers to its elements, and just as

efficiently as in arrays. But unlike arrays, their size can change dynamically, with their

storage being handled automatically by the container.

Some of the member functions of the vector<T> container class where T is the type

of data stored in the vector are listed below.

Member function Description

vector() Default constructor

iterator begin()

const iterator begin() const

Returns an iterator pointing to the first element in

the vector. If the vector object is const-qualified, the

function returns a const iterator. Otherwise, it re-

turns iterator.

iterator end()

const iterator end() const

Returns an iterator referring to the past-the-end ele-

ment in the vector container. If the vector object is

const-qualified, the function returns a const iterator.

Otherwise, it returns iterator.

void push back(const T& val) Adds a new element, val, at the end of the vector, after

its current last element. The content of val is copied

(or moved) to the new element.

25

(2) STL Sequence Container: list

template <class T, class Alloc = allocator<T> > class list;

Defined in the standard header list.

Description:

Lists are sequence containers that are implemented as doubly-linked lists and allow insert

and erase operations anywhere within the sequence.

Some of the member functions of the list<T> container class where T is the type of

data stored in the list are listed below.

Member function Description

list() Default constructor

iterator begin()

const iterator begin() const

Returns an iterator pointing to the first element

in the list. If the list object is const-qualified, the

function returns a const iterator. Otherwise, it re-

turns iterator.

iterator end()

const iterator end() const

Returns an iterator referring to the past-the-

end element in the list container. If the list

object is const-qualified, the function returns a

const iterator. Otherwise, it returns iterator.

void push front(const T& val) Adds a new element, val, at the beginning of the

list, before its current first element. The content of

val is copied (or moved) to the new element.

void push back(const T& val) Adds a new element, val, at the end of the list,

after its current last element. The content of val is

copied (or moved) to the new element.

void pop front() Removes the first element in the list container, ef-

fectively reducing its size by one.

void pop back() Removes the last element in the list container, ef-

fectively reducing its size by one.

iterator erase(iterator position) Removes from the list container a single element

at position pointing by an iterator, position. It re-

turns an iterator pointing to the element that fol-

lowed the last element erased by the function call.

26

(3) STL’s find function which returns the first element in the range [first, last) that is equal

to value.

template <typename InputIt, typename T>

InputIt find(InputIt first, InputIt last, const T& value);

(4) STL’s advance function advances the iterator it by n element positions.

template <typename InputIt, typename Distance>

void advance(InputIt& it, Distance n);

27

/* Rough work */

28

/* Rough work */

29

/* Rough work */

30

