
COMP 2012 Final Exam - Spring 2017 - HKUST

Date: May 19th, 2017 (Friday)
Time Allowed: 3 hours, 8:30 – 11:30 am
Instructions: 1. This is a closed-book, closed-notes examination.

2. There are 8 questions on 34 pages (including this cover page, 2 appenedix
pages, and 3 blank pages at the end).

3. Write your answers in the space provided in black/blue ink. NO pencil please,
otherwise you are not allowed to appeal for any grading disagreements.

4. All programming codes in your answers must be written in the ANSI C++
version as taught in the class.

5. For programming questions, you are NOT allowed to define additional struc-
tures, or use global variables nor any library functions not mentioned in the
questions. But you may use the STL functions given in the Appendix.

Student Name

Student ID

Email Address

Seat Number

Problem Topic Score

1 True or False / 10

2 Class Template / 3

3 STL & Function Object / 7.5

For T.A. 4 Static Member Data/Function / 7.5

Use Only 5 STL & Operator Overloading / 15

6 BST and AVL Tree / 23

7 Hashing: Separate AVL Trees / 21

8 Hashing: Open Addressing / 13

Total / 100

1

Problem 1 [10 points] True or False

Indicate whether the following statements are true or false by circling T or F. You get 1.0

point for each correct answer, −0.5 for each wrong answer, and 0.0 if you do not answer.

(a)T F The “this” pointer is implicitly supplied to all static and non-static member functions of

a class as the first function argument.

(b)T F Overloading a post-increment operator can be done by defining a member function that

takes an int argument.

(c)T F Public data members of a base class can always be accessed by objects of its directly

derived classes regardless of the type of inheritance being used — that is, regardless of

whether public, protected or private inheritance is used.

(d)T F Constructor cannot be virtual.

(e)T F A friend function must be declared/defined as public inside a class, otherwise it cannot

be called by other functions not belonged to the class.

(f)T F There is no way to instantiate the following function template.

template <typename T>

T* func() { return new T; }

(g)T F When the following C++ program is executed, the displayed output contains “Derived”.

#include <iostream>
#include <typeinfo>
using namespace std;
class Base { public: void func() {} };
class Derived : public Base { public: void func() {} };
int main()
{

Base* bp = new Derived;
cout << typeid(*bp).name() << endl;
return 0;

}

2

(h)T F Non-static member functions can access both static and non-static members of class.

(i)T F Suppose a hash table has more slots than the size of the universe of (unique) keys, then

there exists a hash function such that there will be no collisions.

(j)T F If we retrieve the key values stored in a binary bearch bree (BST) using the postorder

traversal method, the first key value retrieved will always be the smallest key value stored

in the BST.

3

Problem 2 [3 points] Template of N-ary Tree Class

N-ary trees are trees in which each node may have up to a maximum of N subtrees. Let’s call

them Ntrees. Write down the template class definition of Ntree (in the spirit of the BST

defined in the lecture notes and in Problem 6) in which each node should have N sub-Ntree

objects (not their pointers) though they can be empty trees. Here are some requirements:

• each tree node should store a value of type T

• each tree node should have N subtree objects of type Ntree

• give a complete definition of the private struct node including one constructor of any

kind

• you do not need to declare/define any member functions of Ntree

• your definition should support Ntree instantiations such as

Ntree<int, 5> x;
Ntree<string, 8> y;

Answer:

template __// TO DO: Complete this line
class Ntree
{

private:
struct node
{ // TO DO: Complete the definition of node

};

node* root;

public:
/* Assume member functions of Ntree are given here */

};

4

Problem 3 [7.5 points] STL and Function Objects

(a) [3 points] Given the following prototype of the STL replace if algorithm,

template <typename ForwardIt, typename UnaryPredicate, typename T>

void replace_if(ForwardIt first, ForwardIt last,

UnaryPredicate p, const T& new_value);

implement the algorithm so that it replaces those elements of a sequence container ac-

cessed by its iterator in the range of [first, last) to the new value if the predicate p

returns true for them.

Answers:

5

(b) [3 points] Write a function object class called LessThan which will be put in a file called

“LessThan.h” that has the following:

• a private data member, threshold, of type int

• a constructor

• an overloaded function-call operator function

The constructor of the LessThan class should initialize its function objects with a thresh-

old so that when a function object of the class is called with a value, it will compare

the given value with its threshold and returns true if the value is less than its threshold,

otherwise false.

Answers:

6

(c) [1.5 points] Complete the following program in the space provided after the “TO DO”

comment lines so that it will run and gives the output below:

Updated marks:

50

0

20

0

#include <iostream> /* File: test-replace-if.cpp */
#include <algorithm> // This includes the definition of replace_if
#include <vector>
#include "LessThan.h"
using namespace std;

int main()
{

vector<int> marks;
marks.push_back(50); marks.push_back(-10);
marks.push_back(20); marks.push_back(-1);

/*
* TO DO: Using replace_if from part (a) together with some function object
* of type LessThan defined in part (b), replace all negative values stored
* in the STL vector marks to 0.
*
***************** CODE BEGINS *****************/

/**************** CODE ENDS *****************/

cout << "Updated marks:" << endl;
for(int i = 0; i < marks.size(); i++)

cout << marks[i] << endl;

return 0;
}

7

Problem 4 [7.5 points] Static Member Data/Function

1 #include <iostream>
2 #include <string>
3 using namespace std;
4

5 class Snacks
6 {
7 protected:
8 static int num;
9 string name;

10

11 public:
12 Snacks() { ++num; }
13 Snacks(string name) : name(name) { ++num; }
14 ˜Snacks() { --num; }
15 string get_name() const { return name; }
16 void total() { cout << "Total snacks created is : " << num << "\n\n"; }
17 };
18

19 class Biscuit: public Snacks
20 {
21 private:
22 static int num;
23

24 public:
25 Biscuit() : Snacks("Oreo") { ++num; show(num); }
26 ˜Biscuit() { --num; show(num); }
27 void show(int pieces)
28 { cout << "There are " << pieces << " biscuits now!" << endl; }
29 };
30

31 class Candy: public Snacks
32 {
33 private:
34 static int num;
35 string color;
36

37 public:
38 Candy() : Snacks("Coffee Candy"), color("Brown") { ++num; show(num); }
39 ˜Candy() { --num; show(num); }
40 void show(int pieces)
41 { cout << "There are " << pieces << " candies now!" << endl; }
42 };
43

8

44 class Child
45 {
46 private:
47 string name;
48 Snacks** s;
49

50 public:
51 Child(string name) : name(name)
52 {
53 cout << "Hello I am " << name << endl;
54 s = new Snacks*[4];
55 for (int i = 0; i < 2; i++)
56 {
57 s[i] = new Biscuit;
58 s[i+2]= new Candy;
59 }
60 cout << endl;
61 }
62

63 ˜Child()
64 {
65 for (int i = 0; i < 4; i++)
66 delete s[i];
67 delete [] s;
68 }
69 };
70

71 int main()
72 {
73 Snacks::total();
74 Child C1("Tommy");
75 Child C2("John");
76 Snacks::total();
77 return 0;
78 }

9

The program on the previous page contains 5 errors (syntax errors, logical errors, missing

statements, etc). Study the program carefully, identify all the errors by writing down the line

numbers at which they occur, and give the reasons. For the missing statements, sometimes

there are more than one place to add them; choose any line number where they should be

added to make the program correct. After fixing the 5 errors, the program is expected to

produce the following output.

Total snacks created is : 0

Hello I am Tommy

There are 1 biscuits now!

There are 1 candies now!

There are 2 biscuits now!

There are 2 candies now!

Hello I am John

There are 3 biscuits now!

There are 3 candies now!

There are 4 biscuits now!

There are 4 candies now!

Total snacks created is : 8

There are 3 biscuits now!

There are 2 biscuits now!

There are 3 candies now!

There are 2 candies now!

There are 1 biscuits now!

There are 0 biscuits now!

There are 1 candies now!

There are 0 candies now!

10

Error# Line# Explanation

1

2

3

4

5

11

Problem 5 [15 points] STL and Operator Overloading

#include <iostream> /* File "set.h" */
#include <vector>
using namespace std;

template <typename T>
class Set // Note: Its elements are ALWAYS arranged in ascending order
{ // of their values BEFORE and AFTER any operation

private:
vector<T> set; // A vector container that stores set elements

public:
Set() { } // Default constructor

// Constructor that initializes this "set" with a given array "arr"
// Note: After initialization, the elements are arranged in ascending order
Set(T* arr, int size) : set(arr, arr + size) // Using STL’s set constructor

{ sort(set.begin(), set.end()); } // STL sort() puts elements into ascending order

// Compare this "set" and another set "s". Return true if they contain the
// same set of elements, otherwise return false
bool operator==(const Set& s) const;

// Perform union of this "set" and another set "s" and return the resulting set
// Definition of union operation: Union of two sets is the set that contains
// all the elements of two sets with no duplicates
// Note: After union, the elements in the resulting set should be arranged
// in ascending order
Set operator+(const Set& s) const;

// Perform union of this "set" and an "item", and return the resulting set
// Note: After union, the elements in the resulting set should be arranged
// in ascending order
Set operator+(const T& item) const;

// Update this "set" with union of this "set" and another set "s"
Set& operator+=(const Set& s);

// Update this "set" with union of this "set" and an "item"
Set& operator+=(const T& item);

// Check whether "item" is in this set.
// Return true if it is, otherwise return false
bool contains(const T& item) const;

// Overload the insertion operator<< for the Set class
template <typename S>

friend ostream& operator<<(/* complete the prototype as well */);
};

#include "set.cpp"

12

Implement the 7 undefined member functions of the above template class ‘Set’ in “set.cpp”

so that they will work with the testing program below to produce the following output.

#include <string> /* File: "test-set.cpp" */
#include "set.h"
int main()
{

string arr1[] = { "Desmond", "Alex", "Brian" };
Set<string> set1(arr1, sizeof(arr1) / sizeof(string));
string arr2[] = { "James", "Desmond", "Raymond" };
Set<string> set2(arr2, sizeof(arr2) / sizeof(string));

cout << "set1: " << set1 << endl;
cout << "set2: " << set2 << endl;
cout << ((set1 == set2) ? "set1 = set2" : "set1 != set2") << endl << endl;

Set<string> set3 = set1 + set2;
cout << "After set3 = set1 + set2" << endl;
cout << "set3: " << set3 << endl << endl;

set3 += "Cecia";
cout << "After adding \"Cecia\" to set3" << endl;
cout << "set3: " << set3 << endl << endl;

string arr4[] = { "Albert", "Gary" };
Set<string> set4(arr4, sizeof(arr4) / sizeof(string));
cout << "set4: " << set4 << endl << endl;

set3 += set4;
cout << "After set3 += set4" << endl;
cout << "set3: " << set3 << endl;
return 0;

}

Output of the program:

set1: [Alex, Brian, Desmond]

set2: [Desmond, James, Raymond]

set1 != set2

After set3 = set1 + set2

set3: [Alex, Brian, Desmond, James, Raymond]

After adding "Cecia" to set3

set3: [Alex, Brian, Cecia, Desmond, James, Raymond]

set4: [Albert, Gary]

After set3 += set4

set3: [Albert, Alex, Brian, Cecia, Desmond, Gary, James, Raymond]

13

Hint: You may use previously defined overloaded operator functions to define other ones.

Answer: /* File: “set.cpp” */

14

/*** Continue Your Answer For Problem 5 On This Page ***/

15

/*** Continue Your Answer For Problem 5 On This Page ***/

16

Problem 6 [23 points] BST and AVL Trees

(a) [2 points] Given 7 values: 3, 4, 5, 7, 11, 23 and 52, draw 2 different binary search trees

(BSTs) that store the 7 values and have a height of 3.

Answer:

(b) [3 points] Suppose the postorder traversal of a BST that holds the above 7 values will

visit the nodes in the following order: 4, 3, 7, 5, 11, 52, 23. Draw the original BST.

Answer:

17

(c) [18 points] Below is the template class definition of BST (which is similar to the one on

our lecture notes) in the file “bst.h”.

/* File: bst.h */
template <typename T> class BST
{

protected:
struct node
{

T value;
BST left;
BST right;
node(const T& x) : value(x), left(), right() { }

};

node* root;

public:
BST() : root(NULL) { }
˜BST() { delete root; }

/* ASSUME THAT THE FOLLOWING 3 FUNCTIOSN ARE GIVEN */
bool empty() const { return root == NULL; }
void insert(const T& x); // Insert value x to the tree
void print(int depth = 0) const; // Print a rotated BST

/***** TO DO: IMPLEMENT ONLY THE FOLLOWING 4 FUNCTIONS *****/

// To find the height of a BST
// Note that the height of an empty tree is -1, and that of a leaf is 0.
int height() const;

// To print the values of leaf nodes from left to right in ascending order
void print_leaves() const;

// To check if the BST is also an AVL tree
bool is_avl() const;

// To perform an inorder BST traversal and print ONLY those values that
// satisfy the boolean function which is passed as the only argument to this
// member function. You have to decide the exact prototype of the function.
void inorder_print_if(/* complete the prototype */) const;

};

The following is a test program of the class.

18

#include <iostream> /* File: bst-test.cpp */
using namespace std;
#include "bst.h"
#include "bst.cpp"

bool is_even(const int& x) { return x%2 == 0; }

int main()
{

BST<int> x;
x.insert(10); x.insert(6); x.insert(3); x.insert(4);
x.insert(15); x.insert(18); x.insert(19); x.insert(13);
x.insert(8); x.insert(2); x.insert(1); x.insert(19);
x.print();

cout << "\n\nHeight = " << x.height();

cout << "\n\nPrint leaves: "; x.print_leaves();

cout << "\n\nPrint even node values: "; x.inorder_print_if(is_even);

cout << "\n\nIs the BST an AVL? " << boolalpha << x.is_avl() << endl;
return 0;

}

which gives the following output:

19

18

15

13

10

8

6

4

3

2

1

Height = 4

Print leaves: 1 4 8 13 19

Print even node values: 2 4 6 8 10 18

Is the BST an AVL? false

19

Implement the following 4 member functions:

i. int height() const;

ii. void print_leaves() const;

iii. bool is_avl() const;

iv. void inorder_print_if(/* complete the prototype */) const;

in a separate file called “bst.cpp” so that they will work with the test program to produce

the above required outputs. Note:

• You have to complete the prototype of the 4th member function inorder print if.

• You may assume that the data type T always supports the operator<< function so

that its value can be output using it.

• For the 2 print functions, separate output values by one space.

Answer:

20

/*** Continue Your Answer For Problem 6 On This Page ***/

21

/*** Continue Your Answer For Problem 6 On This Page ***/

22

Problem 7 [21 points] Hashing: Separate AVL Trees

A hash table of size m = 5 is used to store keys with the hash function

hash(k) = k mod m.

Fifteen keys of the following integral values:

18, 10, 7, 61, 11, 64, 40, 12, 21, 31, 34, 17, 121, 41, 14

are to be inserted into the table in the given order (from left to right) using separate chaining-

like collision resolution. That is, instead of using a linked list, an AVL tree is used for linking

up all the keys that are hashed to the same slot. Each entry of the hash table will store a

pointer to the root of the AVL tree.

For each key insertion, in the space provided in the following table,

i. Draw the AVL tree that results from each key insertion.

ii. If rotation(s) is/are required, indicate the type of insertion that causes violation of the

AVL tree property by putting a tick X in one of the given checkboxes, namely LL, LR,

RL, and RR, where

• LL stands for inserting the key into the left sub-tree of the left child of a node

• LR stands for inserting the key into the right sub-tree of the left child of a node

• RL stands for inserting the key into the left sub-tree of the right child of a node

• RR stands for inserting the key into the right sub-tree of the right child of a node

iii. Cross out the table entries where there will be no inserted keys. The first two keys, 18

and 10, have been inserted for you as an example.

23

Answer:

Table Index 0 1 2 3 4

Insert 18 18

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 10 10 18

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 7

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 61

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

24

Continued:

0 1 2 3 4

Insert 11

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

0 1 2 3 4

Insert 64

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 40

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 12

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

25

Continued:

0 1 2 3 4

Insert 21

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 31

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 34

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 17

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

26

Continued:

0 1 2 3 4

Insert 121

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 41

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

Insert 14

� LL � LR � LL � LR � LL � LR � LL � LR � LL � LR

� RL � RR � RL � RR � RL � RR � RL � RR � RL � RR

27

Problem 8 [13 points] Hashing: Open Addressing

Fill in the following hash tables for each of the stated open addressing hashing methods when

the following eight integers: 2, 3, 7, 33, 24, 29, 30, and 22 are inserted sequentially to the

tables. The following hash function is to be used for this question:

hash(k) = k mod 11

Note that, once a key value gets into the hash table, it stays in the table. To illustrate that,

the insertion of the first key, 2, has been done for you in the table below.

(a) [7 points] Linear probing: hi(k) = (hash(k) + i) mod 11

Table index insert 2 insert 3 insert 7 insert 33 insert 24 insert 29 insert 30 insert 22

0

1

2 2 2 2 2 2 2 2 2

3

4

5

6

7

8

9

10

28

(b) [7 points] Double hashing: Use the hash2 function below as the second hash function:

hash2(k) = 7 − (k mod 7).

Table index insert 2 insert 3 insert 7 insert 33 insert 24 insert 29 insert 30 insert 22

0

1

2

3

4

5

6

7

8

9

10

-------------------- END OF PAPER --------------------

29

Appendix

(1) STL Sequence Container: Vector

template <class T, class Alloc = allocator<T> > class vector;

Defined in the standard header vector.

Description:

Vectors are sequence containers representing arrays that can change in size. Just like ar-

rays, vectors use contiguous storage locations for their elements, which means that their

elements can also be accessed using offsets on regular pointers to its elements, and just as

efficiently as in arrays. But unlike arrays, their size can change dynamically, with their

storage being handled automatically by the container.

Some of the member functions of the vector<T> container class where T is the type

of data stored in the vector are listed below.

Member function Description

vector() Default constructor (another constructor later)

iterator begin()

const iterator begin() const

Returns an iterator pointing to the first element in

the vector. If the vector object is const-qualified, the

function returns a const iterator. Otherwise, it re-

turns iterator.

iterator end()

const iterator end() const

Returns an iterator referring to the past-the-end ele-

ment in the vector container. If the vector object is

const-qualified, the function returns a const iterator.

Otherwise, it returns iterator.

void clear() Removes all elements from the vector (which are de-

stroyed), leaving the container with a size of 0.

void push back(const T& val) Adds a new element, val, at the end of the vector, after

its current last element. The content of val is copied

(or moved) to the new element.

30

(2) STL vector has another constructor that can be used to construct a vector object from

an array as shown below:

int array[] = {1,2,3};

vector<int> object(array, array + sizeof(array)/sizeof(int));

The constructor creates a vector with the range [first,last) using a specified allocator and

is defined as follows:

template <typename InputIterator>

vector(InputIterator first, InputIterator last, const Allocator& = Allocator());

(3) STL’s find function which returns the first element in the range [first, last) that is equal

to value.

template <typename InputIt, typename T>

InputIt find(InputIt first, InputIt last, const T& value);

(4) STL’s sort function sorts the elements in a container in the range [first, last) in ascending

order. The order of equal elements is not guaranteed to be preserved. Elements are

compared using operator<().

template <typename RandomIt>

void sort(RandomIt first, RandomIt last);

31

/* Rough work */

32

/* Rough work */

33

/* Rough work */

34

