
Object-Oriented Programming
and Data Structures

COMP2012: Static Data Members
and Member Functions

Cecia Chan
Brian Mak

Dimitris Papadopoulos

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology

Hong Kong SAR, China

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.1

Static Variables with a File/Function Scope

Static variables are global variables which

are created only once in a program.

reside on the static data region of the
loaded program.

have a lifetime across the entire run of a
program.

still controlled by its scope: file,
function, class.

if not explicitly initialized, will be
zero-initialized for basic types (and their
arrays) and default-initialized for objects.

Static variables in a function

are initialized only once regardless how
many times the function is called.

retain their values across function calls.

can be accessed only inside the function.

static data

program code

stack

(run-time)
heap

(run-time) [... , local variables,
temporary variables,

[objects dynamically
 allocated by "new"]

 passed arguments]

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.2

Example: Static Variable with a File Scope

#include <iostream> /* File: static-var-file.cpp */
using namespace std;

// Global but static variables can be only used
// in the current file; no external linkage
static int x = 5;

int f() { return ++x; }

int main()
{

cout << x << endl;
cout << f() << endl;
cout << f() << endl;

return 0;
}

Question: What is the output?

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.3

Example: Static Variables with a Function Scope
#include <iostream> /* File: static-var-function.cpp */
using namespace std;

int fibonacci(int n, int& calls)
{

static int num_calls = 0; // Initialized only once
calls = ++num_calls;

if (n <= 0)
return 0;

else if (n == 1 || n == 2)
return 1;

else
return fibonacci(n-2, calls) + fibonacci(n-1, calls);

}
int main()
{

int n; int n_calls;
cout << "Enter n: "; cin >> n;
cout << "\nfibonacci(" << n << ") = " << fibonacci(n, n_calls);
cout << "\nnumber of fibonacci calls = " << n_calls << endl;
return 0;

}

Question: What is the output?
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.4

Part I

Static Class Data Members

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.5

Example: Students Study for an Exam By Memorizing

#include <iostream> /* File: student-non-static.h */
#include <string>
using namespace std;
const int MAX_MEM {100};

class Student
{

private:
string name; // Student’s name
string memory[MAX_MEM]; // Each student has his own memory
int amount_of_memory = 0;

public:
Student(string s) : name(s) { }
void do_exam();

void memorize(string txt)
{

if (amount_of_memory >= MAX_MEM)
cerr << name << " can’t memorize anything anymore!\n" << endl;

else
memory[amount_of_memory++] = txt;

}
};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.6

How Do Students Take an Exam

#include "student-non-static.h" /* File: student-non-static.cpp */

void Student::do_exam()
{

if (amount_of_memory == 0) // Haven’t studied anything!
cout << name << ": "<< "Huh???" << endl;

else
{

for (int k = 0; k < amount_of_memory; ++k)
cout << name << ": " << memory[k] << endl;

}

cout << endl;
}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.7

Exam Takes Place Now

#include "student-non-static.h" /* File: exam-non-static.cpp */

int main()
{

Student Jim("Jim");
Jim.memorize("Data consistency is important");
Jim.memorize("Copy constructor != operator=");

Student Steve("Steve");
Steve.memorize("Overloading is convenient");
Steve.memorize("Make data members private");
Steve.memorize("Default constructors have no arguments");

Student Alan("Alan");

Jim.do_exam();
Steve.do_exam();
Alan.do_exam();
return 0;

} // Compile: g++ student-non-static.cpp exam-non-static.cpp

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.8

Result of an Exam

Jim: Data consistency is important

Jim: Copy constructor != operator=

Steve: Overloading is convenient

Steve: Make data members private

Steve: Default constructors have no arguments

Alan: Huh???

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.9

Students Try to Cheat by “Collective Wisdom”

#include <iostream> /* File: student-static.h */
#include <string>
using namespace std;
const int MAX_MEM {100};

class Student
{

private:
string name; // Student’s name
static string memory[MAX_MEM]; // Students share their memories
static int amount_of_memory;

public:
Student(string s) : name(s) { }
void do_exam();

void memorize(string txt)
{

if (amount_of_memory >= MAX_MEM)
cerr << name << " can’t memorize anything anymore!\n" << endl;

else
memory[amount_of_memory++] = txt;

}
};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.10

Students Cheat by Collective Memory

#include "student-static.h" /* File: student-static.cpp */

// Define AND initialize static data globally
string Student::memory[MAX_MEM] { };
int Student::amount_of_memory {0};

void Student::do_exam()
{

if (amount_of_memory == 0) // Haven’t studied anything!
cout << name << ": "<< "Huh???" << endl;

else
{

for (int k = 0; k < amount_of_memory; ++k)
cout << name << ": " << memory[k] << endl;

}

cout << endl;
}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.11

Unfair Exam

#include "student-static.h" /* File: exam-static.cpp */

int main()
{

Student Jim("Jim");
Jim.memorize("Data consistency is important");
Jim.memorize("Copy constructor != operator=");

Student Steve("Steve");
Steve.memorize("Overloading is convenient");
Steve.memorize("Make data members private");
Steve.memorize("Default constructors have no arguments");

Student Alan("Alan");

Jim.do_exam();
Steve.do_exam();
Alan.do_exam();
return 0;

} // Compile: g++ student-static.cpp exam-static.cpp

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.12

Result of Cheating

Here, all students share their memories. So even though Alan
didn’t memorize anything, he can access all the knowledge
memorized by Jim and Steve.

Jim: Data consistency is important

Jim: Copy constructor != operator=

Jim: Overloading is convenient

Jim: Make data members private

Jim: Default constructors have no arguments

Steve: Data consistency is important

Steve: Copy constructor != operator=

Steve: Overloading is convenient

Steve: Make data members private

Steve: Default constructors have no arguments

Alan: Data consistency is important

Alan: Copy constructor != operator=

Alan: Overloading is convenient

Alan: Make data members private

Alan: Default constructors have no arguments

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.13

Static Class Data: Summary

name%

Alan%

name%

Steve%

name%

Jim%

Shared%Memory%

Static class data members are actually global variables
specified by the keyword static under the scope of a class.
There is only one single copy of a static variable in a class,
which are shared among all objects of the class.
Static variables of a class exist even when there are no objects
of the class; they do not take up space inside an object.
Static variables cannot be initialized in the class definition
(except for const int/enum static data).
Static variables must be defined outside the class definition,
usually in the class implementation (.cpp) file.
One still has to observe their access and const qualifier.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.14

Part II

Static Class Member Functions/Methods

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.15

Example: Class Clock With Static Methods

class Clock /* File: clock-w-static-fcn.h */
{

friend ostream& operator<<(ostream& os, const Clock& c)
{ return os << c.hour << " hr. " << c.minute << " min. "; }

public:
Clock() : hour(0), minute(0) { }

static Clock HHMM(int hhmm)
{ return Clock(hhmm/100, hhmm%100); }

static Clock minutes(int m)
{ return Clock(m/60, m%60); }

private:
int hour, minute;
Clock(int h, int m) : hour(h), minute(m) { }

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.16

Class Clock With Static Methods — clock-test.cpp

#include <iostream> /* File: test-clock.cpp */
using namespace std;
#include "clock-w-static-fcn.h"

int main()
{

Clock c1; // 0:00
Clock c2 = Clock::HHMM(123); // 1:23
Clock c3 = Clock::minutes(123); // 2:03

cout << c1 << endl;
cout << c2 << endl;
cout << c3 << endl;

return 0;
}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.17

Static Member Function / Class Method

Classes may also have static member functions or methods.

Static data member (member functions) are also called class
data (methods).

Static member variables (methods) are actually global
variables (functions) but with a class scope and are subject to
the access control specified by the class developer.

Static member functions can be called in 2 ways:
1 like a global function by using the class scope operator::.

2 like a member function of the class using the . operator.

Still have to observe their access control: static data
member/member functions may still be
public|protected|private.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.18

Static Member Function / Class Method ..

Static member functions belong to a class, not to a particular
object of the class. Therefore, static methods of a class

1 do not have the implicit this pointer like regular non-static
member functions.

2 may be used even when there are no objects of the class!

3 can only make use of static data members of the class.

4 cannot be const nor virtual functions.

5 cannot be overloaded with a non-static member function of
the same prototype.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.19

Example: Class Car — car.h

#include <iostream> /* File: car.h */
using namespace std;

class Car
{

public:
Car() { ++num_cars; }
˜Car() { --num_cars; }

void drive(int km) { total_km += km; }
static int cars_still_running() { return num_cars; }

private:
static int num_cars;
int total_km = 0;

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.20

Example: Class Car — car.cpp

#include "car.h" /* File: test-car.cpp */
int Car::num_cars = 0; // Define + initialize static class member

int main()
{

cout << Car::cars_still_running() << endl;
Car vw; vw.drive(1000);
Car bmw; bmw.drive(10);
cout << Car::cars_still_running() << endl;

Car *cp = new Car[100];
cout << Car::cars_still_running() << endl;

{
Car kia; kia.drive(400);
cout << Car::cars_still_running() << endl;

}
cout << Car::cars_still_running() << endl;
delete [] cp;
cout << Car::cars_still_running() << endl; return 0;

}
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.21

Static Data Members and Member Function / Method

Compare a class Car with a factory:

The Car objects are the products made by the factory.

Data members are data on the products, and methods are
services provided by the objects.

Static class data/methods are data/services provided by the
factory.

Even if no object of this type has been created, we can access
the static class data/methods.

A regular member function of Car, such as
void drive(int km) { total_km += km; }

after compilation becomes:
void Car::drive(Car* this, int km) { this->total_km+=km; }

On the other hand, a static method of Car such as
static int cars_still_running() { return num_cars; }

after compilation becomes:
int Car::cars_still_running() { return Car::num_cars; }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.22

	Static Class Data Members
	Static Class Member Functions/Methods

