
Object-Oriented Programming
and Data Structures

COMP2012: Separate Compilation
and Makefile

Cecia Chan
Brian Mak

Dimitris Papadopoulos

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology

Hong Kong SAR, China

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.1

COMP 2011 Example: Bulbs and Lamps

Recall that the example deals with 2 classes: Bulb and Lamp.

A lamp has at least one light bulb.

All bulbs of a lamp are the same in terms of price and wattage
(power).

The price of a lamp that is passed to the Lamp’s constructor
does not include the price of its bulbs which have to be
bought separately.

One installs bulb(s) onto a lamp by calling its member
function install bulbs.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.2

COMP 2011 Example: lamp-test.cpp

#include "lamp.h" /* File: lamp-test.cpp */

int main()
{

Lamp lamp1(4, 100.5); // lamp1 costs HKD100.5 itself; needs 4 bulbs
Lamp lamp2(2, 200.6); // lamp2 costs HKD200.6 itself; needs 2 bulbs

// Install 4 bulbs of 20 Watts, each costing HKD30.1 on lamp1
lamp1.install_bulbs(20, 30.1);
lamp1.print("lamp1");

// Install 2 bulbs of 60 Watts, each costing HKD50.4 on lamp2
lamp2.install_bulbs(60, 50.4);
lamp2.print("lamp2");

return 0;
}
/* To compile: g++ -o lamp-test lamp-test.cpp bulb.cpp lamp.cpp */

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.3

COMP 2011 Example: bulb.h

/* File: bulb.h */

class Bulb
{

private:
int wattage; // A light bulb’s power in watt (W)
float price; // A light bulb’s price in dollars

public:
int get_power() const;
float get_price() const;
void set(int w, float p); // w = bulb’s wattage; p = its price

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.4

COMP 2011 Example: bulb.cpp

/* File: bulb.cpp */

#include "bulb.h"

int Bulb::get_power() const { return wattage; }

float Bulb::get_price() const { return price; }

void Bulb::set(int w, float p) { wattage = w; price = p; }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.5

COMP 2011 Example: lamp.h

#include "bulb.h" /* File: lamp.h */

class Lamp
{

private:
int num_bulbs; // A lamp MUST have 1 or more light bulbs
Bulb* bulbs; // Dynamic array of bulbs installed onto a lamp
float price; // Price of a lamp, NOT including price of its bulbs

public:
Lamp(int n, float p); // n = number of bulbs; p = lamp’s price
˜Lamp();

int total_power() const; // Total power/wattage of the light bulbs
float total_price() const; // Price of a lamp PLUS its light bulbs

// Print out a lamp’s information; see outputs from our example
void print(const char* prefix_message) const;

// All light bulbs of a lamp have the same power/wattage and price:
// w = a light bulb’s wattage; p = a light bulb’s price
void install_bulbs(int w, float p);

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.6

COMP 2011 Example: lamp.cpp

#include "lamp.h" /* File: lamp.cpp */
#include <iostream>
using namespace std;

Lamp::Lamp(int n, float p) { num_bulbs = n; price = p; bulbs = new Bulb [n]; }

Lamp::˜Lamp() { delete [] bulbs; }

int Lamp::total_power() const { return num_bulbs*bulbs[0].get_power(); }

float Lamp::total_price() const { return price + num_bulbs*bulbs->get_price(); }

void Lamp::print(const char* prefix_message) const
{

cout << prefix_message << ": total power = " << total_power() << "W"
<< " , total price = $" << total_price() << endl;

}

void Lamp::install_bulbs(int w, float p)
{

for (int j = 0; j < num_bulbs; ++j)
bulbs[j].set(w, p);

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.7

Compilation of a Program with Several .cpp Files

In the Bulbs and Lamps example, there are:

2 header files: bulb.h and lamp.h
2 class implementation files: bulb.cpp and lamp.cpp
1 app program file: lamp-test.cpp

On Linux/MacOS/Windows/VSCode, you may open a
terminal and type in the following command to compile the
app executable using the g++ compiler:

g++ -o lamp-test lamp-test.cpp bulb.cpp lamp.cpp

g++ has many options; google it for details.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.8

Separate Compilation

One may also compile each .cpp source file separately as
follows:

g++ -c bulb.cpp
g++ -c lamp.cpp
g++ -c lamp-test.cpp
g++ -o lamp-test bulb.o lamp.o lamp-test.o

The first 3 lines that use g++ with the “-c” option create the
object files “bulb.o”, “lamp.o”, “lamp-test.o”.

The .o object files can’t run on their own.

The last line creates the executable program called
“lamp-test” (with the “-o” option) by linking the object files
together.

Linker: a program that combines separately compiled codes
together.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.9

Linking Object Files

file1.cpp

file2.cpp file2.o

file3.cpp

fileN.cpp fileN.o

file3.o

file1.o

a.out

compile

link

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.10

Dependencies Among Files

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.11

Separate Compilation ..

If only “bulb.cpp” is modified, separate compilation allows us
to only re-compile as few files as possible:

g++ -c bulb.cpp
g++ -o lamp-test bulb.o lamp.o lamp-test.o

Similarly, if only “lamp.h” is modified but other files are not:
g++ -c lamp.cpp
g++ -c lamp-test.cpp
g++ -o lamp-test bulb.o lamp.o lamp-test.o

Question: Which files need be re-compiled if “bulb.h” is
modified?

To do separate compilation efficiently, we need to find out the
dependencies among all the sources .h and .cpp files.

If you have tens or hundreds of source files in your program,
finding out all the dependencies manually is not easy.

Solution: automate with “make” using a “Makefile”.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.12

A Simple Makefile

Definition of variables

SRCS = bulb.cpp lamp.cpp lamp-test.cpp

OBJS = bulb.o lamp.o lamp-test.o

Rules’ Format

TARGET: DEPENDENCIES

[TAB] COMMAND USED TO CREATE THE TARGET

lamp-test: $(OBJS)

g++ -o lamp-test $(OBJS)

bulb.o: bulb.cpp

g++ -c bulb.cpp

lamp.o: lamp.cpp

g++ -c lamp.cpp

lamp-test.o: lamp-test.cpp

g++ -c lamp-test.cpp

clean:; /bin/rm lamp-test *.o *.bak

makedepend can find the .h dependencies automatically

depend:; makedepend $(SRCS)

First run “make depend” to get the file dependencies.
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.13

The Simple Makefile After “make depend”

Definition of variables

SRCS = bulb.cpp lamp.cpp lamp-test.cpp

OBJS = bulb.o lamp.o lamp-test.o

lamp-test: $(OBJS)

g++ -o lamp-test $(OBJS)

bulb.o: bulb.cpp

g++ -c bulb.cpp

lamp.o: lamp.cpp

g++ -c lamp.cpp

lamp-test.o: lamp-test.cpp

g++ -c lamp-test.cpp

clean:; /bin/rm lamp-test *.o *.bak

Utility ’makedepend’ finds the .h dependencies automatically

depend:; makedepend $(SRCS)

DO NOT DELETE

bulb.o: bulb.h

lamp.o: lamp.h bulb.h

lamp-test.o: lamp.h bulb.h

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.14

Libraries

If you use any functions declared in the standard C++ header
files (iostream, string, etc.), to produce a working executable,
the linker needs to include their codes, which can be found in
the standard C++ libraries.

A library is a collection of object codes.

The linker selects object codes from the libraries that contain
the definitions for functions used in the program files, and
includes them in the executable.

Some libraries, such as the standard C++ library, are searched
automatically by the C++ linker.

Other libraries have to be specified by the user during the
linking process with the ‘-l” option.

e.g., To link with a library called “libABC.a” in the local
folder,

g++ -o myprog myprog.o -lABC

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.15

Static and Dynamic Linking With a Library

Static linking: copy all relevant library functions that are used by a
program into its executable.

Pros: Run faster and is more portable since everything it
needs are in the executable.

Cons: larger file size

Dynamic linking: assume that the library functions are shared —
and can be found on the target machines and only write down
which shared libraries are required to use at runtime in the
executable.

Pros: smaller file size, and many programs can share a single
copy of the shared libraries.

Cons#1: Run more slowly as the actual linking with the
libraries are done at runtime.

Cons#2: Less portable as a machine may not have installed
the required shared libraries.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.16

Preprocessor Directives: #include

Besides statements allowed in a programming language, useful
program development features are added via directives.

Directives are handled by a program called preprocessor before
the source code is compiled.

In C++, preprocessor directives begin with the # sign in the
very first column.

The #include directive reads in the contents of the named file.
#include <iostream>
#include “myfile.h”

< > are used to include standard header files which are
searched at the standard library directories.

“ ” are used to include user-defined header files which are
searched first at the current directory.

“g++ -I” may be used to change the search path.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.17

#ifndef, #define, #endif

/* program.h */ /* b.h */ /* c.h */
#include “b.h” #include “a.h” #include “a.h”
#include “c.h” #include “d.h” #include “e.h”
· · · · · · · · ·

Since #include directives may be nested, the same header file may
be included twice!

multiple processing ⇒ waste of time

re-definition of global variables, constants, classes

Thus, the need of conditional directives

#ifndef LAMP_H
#define LAMP_H
// object declarations, class definitions, functions
#endif // LAMP_H

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.18

