
Object-Oriented Programming
and Data Structures

COMP2012: Inheritance

Cecia Chan
Brian Mak

Dimitris Papadopoulos

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology

Hong Kong SAR, China

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.1

Example: University Admin Info

Let’s implement a system for maintaining university administrative
information.

Teacher and Student are two completely separate classes.

Their implementation uses separate code.

However, some of their members and methods are
implemented in the same way: name and department, and
their handling member functions.

Why would we implement the same function twice?

That is not good re-use of software!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.2

Example: U. Admin Info — Student Class

/* File: student1.h */
enum Department { CBME, CIVL, CSE, ECE, IELM, MAE };

class Student
{

private:
string name;
Department dept;
float GPA;
Course* enrolled;
int num_courses;

public:
Student(string n, Department d, float x) :

name(n), dept(d), GPA(x), enrolled(nullptr), num_courses(0) { }
string get_name() const;
Department get_department() const;
float get_GPA() const;
bool add_course(const Course& c);
bool drop_course(const Course& c);

};
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.3

Example: U. Admin Info — Teacher Class

/* File: teacher1.h */
enum Department { CBME, CIVL, CSE, ECE, IELM, MAE };
enum Rank { PROFESSOR, DEAN, PRESIDENT };

class Teacher
{

private:
string name;
Department dept;
Rank rank;
string research_area;

public:
Teacher(string n, Department d, Rank r, string a) :

name(n), dept(d), rank(r), research_area(a) { }
string get_name() const;
Department get_department() const;
Rank get_rank() const;
string get_research_area() const;

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.4

Things to Consider

We want a way to say that Student and Teacher both have
the same members: name, dept, but yet require them to
keep a separate copy of these members.

We want to share the code for get name etc. between
Student and Teacher as well.

However, objects have states, and their consistency should be
maintained when the objects’ methods are called — so we
cannot just write global functions to do it.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.5

Solution#1: Re-use by Copying

Copy the code from one class to the other class, and change the
class names.

This is very error prone.

It is also a maintenance nightmare.

What if we find a bug in the code in one class?
What if we want to improve the code? Perhaps we
introduce a new member address.

“Re-use by copying” is a bad idea!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.6

Part I

What is Inheritance?

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.7

Solution#2: By Inheritance

Idea: Find out the common data members and member functions
of Student and Teacher and put them into a parent class, called
UPerson here, and apply the inheritance mechanism.

/* File: student1.h */
enum Department { CBME, CIVL, CSE, ECE, IELM,
MAE };

class Student
{

private:
string name;
Department dept;
float GPA;
Course* enrolled;
int num_courses;

public:
Student(string n, Department d, float x) :

name(n), dept(d), GPA(x),
enrolled(nullptr), num_courses(0) { }

string get_name() const;
Department get_department() const;
float get_GPA() const;
bool add_course(const Course& c);
bool drop_course(const Course& c);

};

/* File: teacher1.h */
enum Department { CBME, CIVL, CSE, ECE, IELM,
MAE };
enum Rank { PROFESSOR, DEAN, PRESIDENT };

class Teacher
{

private:
string name;
Department dept;
Rank rank;
string research_area;

public:
Teacher(string n, Department d, Rank r,
string a) :

name(n), dept(d), rank(r),
research_area(a) { }

string get_name() const;
Department get_department() const;
Rank get_rank() const;
string get_research_area() const;

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.8

Solution#2: Inheritance — Base Class + Derived Classes

(Note: Only the data members are shown in each class.)

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.9

Solution#2: By Inheritance — UPerson Class

#ifndef UPERSON_H /* File: uperson.h */
#define UPERSON_H

enum Department { CBME, CIVL, CSE, ECE, IELM, MAE };
class UPerson
{

private:
string name;
Department dept;

public:
UPerson(string n, Department d) : name(n), dept(d) { }
string get_name() const { return name; }
Department get_department() const { return dept; }

};

#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.10

Solution#2: By Inheritance — Student Class

#ifndef STUDENT_H /* File: student.h */
#define STUDENT_H

#include "uperson.h" // Don’t forget your parents!!
class Course { /* incomplete */ };

class Student : public UPerson // Public inheritance
{

private:
float GPA;
Course* enrolled;
int num_courses;

public:
Student(string n, Department d, float x) :

UPerson(n, d), GPA(x), enrolled(nullptr), num_courses(0) { }
float get_GPA() const { return GPA; }
bool enroll_course(const string& c) { /* incomplete */ };
bool drop_course(const Course& c) { /* incomplete */ };

};
#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.11

Solution#2: By Inheritance — Teacher Class

#ifndef TEACHER_H /* File: teacher.h */
#define TEACHER_H

#include "uperson.h" // Don’t forget your parents!!
enum Rank { PROFESSOR, DEAN, PRESIDENT };

class Teacher : public UPerson // Public inheritance
{

private:
Rank rank;
string research_area;

public:
Teacher(string n, Department d, Rank r, string a) :

UPerson(n, d), rank(r), research_area(a) { }
Rank get_rank() const { return rank; }
string get_research_area() const { return research_area; }

};

#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.12

Inheritance

Inheritance is the ability to define a new class based on an
existing class with a hierarchy.

The derived class inherits data members and member
functions of the base class.

New members and functions are added to the derived class.

The new class only has to implement the behavior that is
extra to the base class, and the code of the base class can be
re-used in the derived class.

In this example, UPerson is the base class, and Student and
Teacher are the derived classes.

Student and Teacher inherit all data members and functions
from UPerson.

E.g., data members of Student include the data members of
UPerson {name, dept}, plus the extra data members declared
in Student’s definition {GPA, enrolled, num courses}.

Inheritance enables code re-use.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.13

Example: Inherited Members and Functions
#include <iostream> /* File: inherited-fcn.cpp */
using namespace std;
#include "student.h"

void some_func(UPerson& uperson, Student& student) {
cout << uperson.get_name() << endl;
Department dept = uperson.get_department();
// Error! Base class object can’t call derived class’s function
uperson.enroll_course("COMP1001");

// Derived class object may call base class’s member function
cout << student.get_name() << endl;
// Derived class object calls its own member functions
cout << student.get_GPA() << endl;
student.enroll_course("COMP2012");

}

int main() {
UPerson abby("Abby", CBME);
Student bob("Bob", CIVL, 3.0);
some_func(abby, bob);

}
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.14

Polymorphic or Liskov Substitution Principle

Inheritance implements the is-a relationship.

Since Student inherits from UPerson,

A Student object can be treated like a UPerson object.
All methods of UPerson can be called by a Student
object.

In other words, a Student object is a UPerson object.

In general, an object of the derived class can be treated like
an object of the base class under all circumstances.

If class D (a derived class) inherits from class B (the base class):

Every D object is also a B object,
but not vice-versa.

B is a more general concept; D is a
more specific concept.

Wherever a B object is needed, a
D object can be used instead.

base class

derived class

"is−a relationship"

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.15

Polymorphic or Liskov Substitution Principle ..

By deriving Student and Teacher classes are from UPerson class,
we have:

Since a Student/Teacher object is also a UPerson object,
any functions defined on UPerson objects may also be called
by any Student and Teacher objects.

Obviously, functions defined on UPerson objects can only
make use of UPerson’s data/functions; they can’t use
data/functions of UPerson’s derived classes which are not
known yet at the time of their (UPerson) creation!

Function Expecting an Argument of Type Will Also Accept

UPerson Student

pointer to UPerson pointer to Student

UPerson reference Student reference

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.16

Example: Derived Objects Treated as Base Class Objects

#include <iostream> /* File: print-label.cpp */
using namespace std;
#include "student.h"
#include "teacher.h"

void print_label(const UPerson& uperson)
{

cout << "Name: " << uperson.get_name() << endl;
cout << "Dept: " << uperson.get_department() << endl;

}

int main()
{

Student tom("Tom", CIVL, 3.9);
print_label(tom); // Tom is also a UPerson

Teacher alan("Alan Turing", CSE, PROFESSOR, "AI");
print_label(alan); // Alan is also a UPerson
return 0;

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.17

Example: Derived Objects Treated as Base Class Objects ..
#include <iostream> /* File: print-label2.cpp */
using namespace std;
#include "student.h"

void print_label(const UPerson* uperson) {
cout << "Name: " << uperson->get_name() << endl;
cout << "Dept: " << uperson->get_department() << endl;

}
void print_label(const UPerson& uperson) {

cout << "Name: " << uperson.get_name() << endl;
cout << "Dept: " << uperson.get_department() << endl;

}
void print_label(const Student& student) {

cout << "Name: " << student.get_name() << endl;
cout << "Dept: " << student.get_department() << endl;
cout << "GPA: " << student.get_GPA() << endl;

}
int main() { // Which print_label()?

Student tom("Tom", CIVL, 3.9); print_label(tom);
UPerson& tom2 = tom; print_label(tom2);
UPerson* p = &tom; print_label(p);

}
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.18

Quiz: Derived Objects Treated as Base Class Objects ..

#include <iostream> /* File: substitute.cpp */
using namespace std;
#include "student.h"

int main() {
void dance(const UPerson& p); // Anyone can dance
void dance(const UPerson* p); // Anyone can dance
void study(const Student& s); // Only students study
void study(const Student* s); // Only students study
UPerson p("P", IELM); Student s("S", MAE, 3.3);

// Which of the following statements can compile?
dance(p);
dance(s);
dance(&p);
dance(&s);
study(s);
study(p);
study(&s);
study(&p);

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.19

Extending Class Hierarchy

We can easily add classes to our existing class hierarchy of
UPerson, Student, and Teacher.

New classes can immediately benefit from all functions that
are available to their base classes.

e.g., void print label(const UPerson& person)
will work immediately for a new class called PG Student,
even though this type of objects was unknown when
print label() was designed and written.

In fact, it is not even necessary to recompile the existing code:
It is enough to link the new class with the object codes of
UPerson and print label().

Advanced use: Link in new objects while the code is running!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.20

Direct and Indirect Inheritance

Let’s add a new class PG Student to the hierarchy.

PG Student is directly derived from Student.
It is indirectly derived from UPerson.

So a PG Student object is also a UPerson object.

UPerson is called an indirect base class of PG Student.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.21

Direct and Indirect Inheritance — PG Student Class

#ifndef PG_STUDENT_H /* File: pg-student.h */
#define PG_STUDENT_H

#include "student.h"

class PG_Student : public Student
{

private:
string research_topic;

public:
PG_Student(string n, Department d, float x) :

Student(n, d, x), research_topic("") { }

string get_topic() const { return research_topic; }
void set_topic(const string& x) { research_topic = x; }

};

#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.22

Example: Indirect Inheritance

Let’s promote Tom to PG Student.

Can Tom still use the print label() function?

#include <iostream> /* File: pg-print-label.cpp */
using namespace std;
#include "pg-student.h" // Change student.h to pg-student.h

void print_label(const UPerson& uperson)
{

cout << "Name: " << uperson.get_name() << endl;
cout << "Dept: " << uperson.get_department() << endl;

}

int main()
{

PG_Student tom("Tom", CIVL, 3.9); // Tom is now a PG Student
print_label(tom); // Tom is also a UPerson
return 0;

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.23

Part II

Initialization of Classes

in an Inheritance Hierarchy

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.24

Initialization of Base Class Objects

grandparent class

parent class

child class (C)

(B)

(A) B

C

A

If class C is derived from class B which is in turn derived from
class A, then C will contain data members of both B and A.

Class C’s constructor can only call class B’s constructor, and
class B’s constructor can only call class A’s constructor.

It is the responsibility of each derived class to initialize its
direct base class correctly.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.25

Initialization of Base Class Objects by Initializers

Before a Student object can come into existence, we have to
create its UPerson parent first.

Student’s constructors have to call a UPerson’s constructor
through the member initializer list.

Student::Student(string n, Department d, float x) :
UPerson(n,d), GPA(x), enrolled(nullptr), num_courses(0) { }

Similarly, PG Student has to create its Student part before
it can be created.

But, it does not need to create its UPerson part directly by
calling UPerson’s constructor.

In fact, its UPerson part should have been created by
Student.

PG_Student::PG_Student(string n, Department d, float x) :
Student(n, d, x), research_topic("") { }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.26

Order of Cons/Destruction: Student w/ an Address

#include <iostream> /* File: init-order.cpp */
using namespace std;

class Address {
public:

Address() { cout << "Address’s constructor" << endl; }
˜Address() { cout << "Address’s destructor" << endl; }

};

class UPerson {
public:

UPerson() { cout << "UPerson’s constructor" << endl; }
˜UPerson() { cout << "UPerson’s destructor" << endl; }

};

class Student : public UPerson {
public:

Student() { cout << "Student’s constructor" << endl; }
˜Student() { cout << "Student’s destructor" << endl; }

private: Address address;
};

int main() { Student x; return 0; }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.27

Order of Cons/Destruction: Student w/ an Address ..

UPerson’s constructor

Address’s constructor

Student’s constructor

Student’s destructor

Address’s destructor

UPerson’s destructor

That is, the order is construction of a class object

1 its parent

2 its data members
(in the order of their appearance in the class definition)

3 itself

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.28

Order of Cons/Destruction: Move Address to UPerson
#include <iostream> /* File: init-order2.cpp */
using namespace std;

class Address {
public:

Address() { cout << "Address’s constructor" << endl; }
˜Address() { cout << "Address’s destructor" << endl; }

};

class UPerson {
public:

UPerson() { cout << "UPerson’s constructor" << endl; }
˜UPerson() { cout << "UPerson’s destructor" << endl; }

private: Address address;
};

class Student : public UPerson {
public:

Student() { cout << "Student’s constructor" << endl; }
˜Student() { cout << "Student’s destructor" << endl; }

};

int main() { Student x; return 0; }

Question: What is the output now?
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.29

Part III

Some Problems of Inheritance

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.30

Problem #1: Slicing

An assignment from a derived class object to a base class
object results in “slicing”.

This is rarely desirable.

Once slicing has happened, there is no trace of the fact that
we started with a derived class.

#include <iostream> /* File: slice.cpp */
#include <string>
using namespace std;
#include "../basics/uperson.h"
#include "../basics/student.h"

int main()
{

Student student("Snoopy", CSE, 3.5);
UPerson* pp = &student;
UPerson* pp2 = new Student("Mickey", ECE, 3.4);

UPerson uperson("Unknown", CIVL);
uperson = student; // What does "uperson" have?
return 0;

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.31

Problem #2: Name Conflicts

1 /* File: name-conflict.h */
2 void print(int x, int y) { cout << x << " , " << y << endl; }
3

4 class B
5 {
6 private:
7 int x, y;
8 public:
9 B(int p = 1, int q = 2) : x(p), y(q)

10 { cout << "Base class constructor: "; print(x, y); }
11 void f() const { cout << "Base class: "; print(x, y); }
12 };
13

14 class D : public B
15 {
16 private:
17 float x, y;
18 public:
19 D() : x(10.2), y(20.6) { cout << "Derived class constructor\n"; }
20 void f() const { cout << "Derived class: "; print(x, y); B::f(); }
21 };

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.32

Problem #2: Name Conflicts ..

1 #include <iostream> /* File: name-conflict.cpp */
2 using namespace std;
3 #include "name-conflict.h"
4

5 void smart(const B* p) { cout << "Inside smart(): "; p->f(); }
6

7 int main()
8 {
9 B base(5, 6); cout << endl;

10 D derive; cout << endl;
11

12 B* bp = &base; bp->f(); cout << endl;
13 D* dp = &derive; dp->f(); cout << endl;
14

15 bp = &derive; bp->f(); cout << endl;
16

17 cout << "Call smart(bp): "; smart(bp);
18 cout << "Call smart(dp): "; smart(dp);
19 return 0;
20 }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.33

Problem #2: Name Conflicts Output

Base class constructor: 5 , 6

Base class constructor: 1 , 2

Derived class constructor

Base class: 5 , 6

Derived class: 10 , 20

Base class: 1 , 2

Base class: 1 , 2

Call smart(bp): Inside smart(): Base class: 1 , 2

Call smart(dp): Inside smart(): Base class: 1 , 2

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.34

Summary

Behavior and structure of the base class is inherited by the
derived class.

However, constructors and destructor are an exception. They
are never inherited.

There is a kind of contract between a base class and a derived
class:

The base class provides functionality and structure
(methods and data members).
The derived class guarantees that the base class is
initialized in a consistent state by calling an appropriate
constructor.

A base class is constructed before the derived class.

A base class is destructed after the derived class.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.35

Part IV

Access Control: public, protected, private

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.36

Example: Add print() to UPerson/Student Class

/* File: print1.cpp */

class UPerson { public: void print() const; ... };

class Student: public UPerson { public: void print() const; ... };

void UPerson::print() const
{

cout << "--- UPerson details ---" << endl;
cout << "Name: " << name << endl << "\nDept: " << dept << endl;

}

void Student::print() const
{

cout << "--- Student details ---" << endl
<< "Name: " << name << endl
<< "\nDept: " << dept << endl << "Enrolled in:" << endl;

for (int i = 0; i < num_courses; i++)
enrolled[i].print(); // Assume a print function in Course

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.37

Example: Student::print() Doesn’t Compile!

The implementation of Student::print() given before
doesn’t work. It will raise an error during compilation:

Student::print(): name and dept are declared private.

name is a private data member of the base class UPerson.

Public inheritance does not change the access control of the
data members of the base class.

Private members are still only available to base class’ own
member functions (methods), and not to any other classes
including derived classes (except friends) or global functions.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.38

One Solution: Protected Data Members

class UPerson /* File: protected-uperson.h */
{

protected:
string name;
Department dept;

public:
UPerson(string n, Department d) : name(n), dept(d) { };
void print() const;
...

};

By making name and dept protected, they are accessible to
methods in the base class as well as methods in the derived
classes.

They should not be public though!
(Principle of information hiding.)

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.39

Member Access Control: public, protected, private

There are 3 levels of member (data or methods) access control:

1 public: accessible to

member functions of the class (from class developer)
any member functions of other classes (application
programmers)
any global functions (application programmers)

2 protected: accessible to

member functions and friends of the class
member functions and friends of its derived classes
(subclasses)

⇒ class developer restricts what subclasses may directly use

3 private: accessible only to

member functions and friends of the class

⇒ class developer enforces information hiding

Without inheritance, private and protected control are the same.
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.40

protected vs. private

So why not always use protected instead of private?

Because protected means that we have less data
encapsulation: Remember that all derived classes can access
protected data members of the base class.

Assume that later you decided to change the implementation
of the base class having the protected data members.

For example, we might want to represent dept of UPerson by
a new class called class Department instead of enum
Department. If the dept data member is private, we can
easily make this change. The update on the UPerson class
documentation is small.

However, if it is protected, we have to go through not only
the UPerson class, but also all its derived classes and change
them. We also need to update the documentation of many
classes.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.41

protected vs. private ..

In general, it is preferable to have private members instead of
protected members.

Use protected only where it is really necessary. private is the
only category ensuring full data encapsulation.

This is particularly true for data members, but it is less
harmful to have protected member functions. Why?

When a class has protected members, it is a hint that it
expects others to derive sub-classes from it.

In our example, there is no reason at all to make name, and dept
protected, as we can access the name and address through
appropriate public member functions.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.42

Write Student::print(), Teacher::print() with UPerson’s
Public Member Functions Only

void Student::print() const /* correct-student-print.cpp */
{

cout << "--- Student details ---" << endl
<< "Name: " << get_name() << endl // Use UPerson’s public fcn
<< "Dept: " << get_dept() << endl // Use UPerson’s public fcn
<< "Enrolled in:" << endl;

for (int i = 0; i < num_courses; i++)
enrolled[i].print(); // Use Course’s public fcn

}

void Teacher::print() const /* correct-teacher-print.cpp */
{

cout << "--- Teacher details ---" << endl
<< "Name: " << get_name() << endl // Use UPerson’s public fcn
<< "Dept: " << get_dept() << endl // Use UPerson’s public fcn
<< "Rank: " << get_rank() << endl; // Use its own fcn

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.43

Write Student::print(), Teacher::print() with UPerson’s
Public Member Functions Only ..

Let’s use the new print() functions now.

/* File: print-example.cpp (incomplete) */
UPerson newton("Isaac Newton", MAE);
Teacher turing("Alan Turing", CSE, DEAN);
Student edison("Thomas Edison", ECE, 2.5);
edison.enroll_course("COMP2012");

newton.print();
turing.print();
edison.print();

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.44

Write Student::print(), Teacher::print() with UPerson’s
Public Member Functions Only — Expected Output

--- UPerson details ---

Name: Isaac Newton

Dept: 5

--- Teacher details ---

Name: Alan Turing

Dept: 2

Rank: 1

--- Student details ---

Name: Thomas Edison

Dept: 3

Enrolled in:

COMP2012

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.45

Part V

Polymorphism:

Dynamic Binding & Virtual Function

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.46

Global print() for UPerson and its Derived Objects

#include <iostream> /* File: print-label.cpp */
using namespace std;
#include "student.h"
#include "teacher.h"

void print_label_v(UPerson uperson) { uperson.print(); }
void print_label_r(const UPerson& uperson) { uperson.print(); }
void print_label_p(const UPerson* uperson) { uperson->print(); }

int main() {
UPerson uperson("Charlie Brown", CBME);
Student student("Edison", ECE, 3.5);
Teacher teacher("Alan Turing", CSE, PROFESSOR, "CS Theory");
student.add_course("COMP2012"); student.add_course("MATH1003");

cout << "\n##### PASS BY VALUE #####\n";
print_label_v(uperson); print_label_v(student); print_label_v(teacher);

cout << "\n##### PASS BY REFERENCE #####\n";
print_label_r(uperson); print_label_r(student); print_label_r(teacher);

cout << "\n##### PASS BY POINTER #####\n";
print_label_p(&uperson); print_label_p(&student); print_label_p(&teacher);

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.47

Are These Outputs What You Want?

PASS BY VALUE

--- UPerson Details ---

Name: Charlie Brown

Dept: 0

--- UPerson Details ---

Name: Edison

Dept: 3

--- UPerson Details ---

Name: Alan Turing

Dept: 2

PASS BY REFERENCE

--- UPerson Details ---

Name: Charlie Brown

Dept: 0

--- UPerson Details ---

Name: Edison

Dept: 3

--- UPerson Details ---

Name: Alan Turing

Dept: 2

PASS BY POINTER

--- UPerson Details ---

Name: Charlie Brown

Dept: 0

--- UPerson Details ---

Name: Edison

Dept: 3

--- UPerson Details ---

Name: Alan Turing

Dept: 2

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.48

You Probably Want This

PASS BY VALUE

--- UPerson Details ---

Name: Charlie Brown

Dept: 0

--- UPerson Details ---

Name: Edison

Dept: 3

--- UPerson Details ---

Name: Alan Turing

Dept: 2

PASS BY REFERENCE

--- UPerson Details ---

Name: Charlie Brown

Dept: 0

--- Student Details ---

Name: Edison

Dept: 3

2 Enrolled courses: COMP2012 MATH1003

--- Teacher Details ---

Name: Alan Turing

Dept: 2

Rank: 0

Research area: CS Theory

PASS BY POINTER

--- UPerson Details ---

Name: Charlie Brown

Dept: 0

--- Student Details ---

Name: Edison

Dept: 3

2 Enrolled courses: COMP2012 MATH1003

--- Teacher Details ---

Name: Alan Turing

Dept: 2

Rank: 0

Research area: CS Theory

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.49

Static (or Early) Binding

Because of the polymorphic substitution principle, a function
accepting a base class object also accepts its derived objects.

In our current case, the following 3 global print functions:

void print_label_v(UPerson uperson) { uperson.print(); }
void print_label_r(const UPerson& uperson) { uperson.print(); }
void print_label_p(const UPerson* uperson) { uperson->print(); }

will accept objects of UPerson/Student/Teacher classes,
and objects derived from them directly or indirectly.

However, when these function codes are compiled, the
compiler only looks at the static type of uperson which is
UPerson, const UPerson&, or const UPerson*, and the
method UPerson::print() is called.

Static binding: the binding (association) of a function name
(here print()) to the appropriate method is done by a static
analysis of the code at compile time based on the static (or
declared) type of the object (here, UPerson) making the call.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.50

Static Binding: Who May Call Whose print()?

1 #include <iostream> /* File: static-example.cpp */
2 using namespace std;
3 #include "teacher.h"
4

5 int main()
6 {
7 UPerson uperson("Charlie Brown", CBME);
8 Teacher teacher("Alan Turing", CSE, PROFESSOR, "CS Theory");
9 UPerson* u; Teacher* t;

10

11 cout << "\nUPerson object pointed by UPerson pointer:\n";
12 u = &uperson; u->print();
13

14 cout << "\nTeacher object pointed by Teacher pointer:\n";
15 t = &teacher; t->print();
16

17 cout << "\nTeacher object pointed by UPerson pointer:\n";
18 u = &teacher; u->print();
19

20 cout << "\nUPerson object pointed by Teacher pointer:\n";
21 t = &uperson; t->print(); // Error: convert base-class ptr
22 // to derived-class ptr
23 t = static_cast<Teacher*>(&uperson); t->print(); // Ok, but ...
24 }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.51

Dynamic (or Late) Binding

By default, C++ uses static binding. (Same as C, Pascal, and
FORTRAN.)

In static binding, what a pointer really points to, or what a
reference actually refers to is not considered; only the
pointer/reference type is.

But C++ also allows dynamic binding which is supported
through virtual functions.

When dynamic binding is used, the actual method to be called
is selected using the actual type of the object in the call, but
only if the object is passed by reference or pointer. i.e.,

print label r(a UPerson object) calls UPerson::print();
print label r(a Teacher object) calls Teacher::print();
print label r(a Student object) calls Student::print().

Magic: the possible object types don’t need to be known at
the time when the function definition is being compiled!!!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.52

Virtual Functions

A virtual function is declared using the keyword virtual in the
class definition, and not in the method implementation, if it is
defined outside the class.

Once a method is declared virtual in the base class, it is
automatically virtual in all directly or indirectly derived classes.

Even though it is not necessary to use the virtual keyword in
the derived classes, it is a good style to do so because it
improves the readability of header files.

Calls to virtual functions are a little bit slower than normal
function calls. The difference is extremely small and it is not
worth worrying about, unless you write very speed-critical
code.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.53

Virtual Function: UPerson Class
#ifndef V_UPERSON_H /* File: v-uperson.h */
#define V_UPERSON_H

enum Department { CBME, CIVL, CSE, ECE, IELM, MAE };
class UPerson
{

private:
string name;
Department dept;

public:
UPerson(string n, Department d) : name(n), dept(d) { };
string get_name() const { return name; }
Department get_department() const { return dept; }

virtual void print() const
{

cout << "--- UPerson Details --- \n"
<< "Name: " << name << "\nDept: " << dept << "\n";

}
};

#endif {kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.54

Virtual Function: Course Class

#ifndef COURSE_H /* File: course.h */
#define COURSE_H

class Course
{

private:
string code;

public:
Course(const string& s) : code(s) { }
˜Course() { cout << "destruct course: " << code << endl; }
void print() const { cout << code; }

};

#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.55

Virtual Function: Student Class
#ifndef V_STUDENT_H /* File: v-student.h */
#define V_STUDENT_H
#include "course.h"
#include "v-uperson.h"

class Student : public UPerson { // Public inheritance
private:

float GPA; Course* enrolled[50]; int num_courses;

public:
Student(string n, Department d, float x) :

UPerson(n, d), GPA(x), num_courses(0) { }
˜Student() { for (int j = 0; j < num_courses; ++j) delete enrolled[j]; }
float get_GPA() const { return GPA; }
bool add_course(const string& s)

{ enrolled[num_courses++] = new Course(s); return true; };
virtual void print() const {

cout << "--- Student Details --- \n"
<< "Name: " << get_name() << "\nDept: " << get_department()
<< "\n" << num_courses << " Enrolled courses: ";

for (int j = 0; j < num_courses; ++j)
{ enrolled[j]->print(); cout << ’ ’; } cout << endl;

}
};
#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.56

Virtual Function: Teacher Class
#ifndef V_TEACHER_H /* File: v-teacher.h */
#define V_TEACHER_H
#include "v-uperson.h"

enum Rank { PROFESSOR, DEAN, PRESIDENT };
class Teacher : public UPerson // Public inheritance
{

private:
Rank rank;
string research_area;

public:
Teacher(string n, Department d, Rank r, string a) :

UPerson(n, d), rank(r), research_area(a) { };
Rank get_rank() const { return rank; }
string get_research_area() const { return research_area; }
virtual void print() const {

cout << "--- Teacher Details --- \n"
<< "Name: " << get_name()
<< "\nDept: " << get_department()
<< "\nRank: " << rank
<< "\nResearch area: " << research_area << endl;

}
};
#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.57

Polymorphism

Polymorphism

poly = multiple morphos = shape

Polymorphism in C++ means that we can work with objects
without knowing their precise type at compile time.

void print_label_p(const UPerson* uperson) { uperson->print(); }

The type of the object pointed to by uperson is not known to
the programmer writing this code, nor to the compiler.

We say that uperson exhibits polymorphism, because the
object can take on multiple “shapes” (Student, Teacher,
PG Student, etc.).

Polymorphism allows us to write programs that behave
correctly even when used with objects of derived classes.

Again a pointer or reference must be used to take advantage
of polymorphism.

Question: Why won’t polymorphism work if pass-by-value is used?
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.58

Example: Polymorphism using Virtual Function
#include <iostream> /* File: v-example.cpp */
using namespace std;
#include "v-student.h"
#include "v-teacher.h"

int main()
{

char person_type; string name; UPerson* uperson[3];

for (int j = 0; j < sizeof(uperson)/sizeof(UPerson*); ++j)
{

cout << "Input the uperson type (u/s/t) and his name : ";
cin >> person_type >> name;
switch (person_type)
{

case ’u’: uperson[j] = new UPerson(name, MAE); break;
case ’s’: uperson[j] = new Student(name, CIVL, 4.0); break;
case ’t’: uperson[j] = new Teacher(name, CSE, DEAN, "AI"); break;

}
}

for (int j = 0; j < sizeof(uperson)/sizeof(UPerson*); ++j)
uperson[j]->print();

return 0;
} // The example does’t destruct the dynamically allocated objects

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.59

Run-Time Type Information (RTTI)

RTTI is a run-time facility that keeps track of dynamic types
⇒ program can determine an object’s type at run-time.

The function typeid(<expression>) returns an object of the
type type info. It has a member function

const char* name() const

that returns the type name of the expression.

static cast() may be used to perform type conversions,

including conversions between pointers to classes in an
inheritance hierarchy;
it doesn’t consult RTTI to ensure the conversion is safe;
thus, it runs faster.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.60

RTTI ..

dynamic cast(), on the other hand,

only works on pointers and references of polymorphic
class (with virtual functions) types;

consults RTTI to make sure the conversion result refers
to a valid complete object of the target type.

If the input is a pointer: it returns a pointer to a valid
complete object of the target type, otherwise, a null
pointer.

If the input is a reference: it returns a reference to a valid
complete object of the target type, otherwise, it is a
runtime error!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.61

Example: RTTI typeid()
#include <iostream> /* File: rtti.cpp */
using namespace std;
#include "v-student.h"
#include "v-teacher.h"

int main()
{

UPerson* uperson[3] {nullptr, nullptr, nullptr};
char person_type; string name;

for (int j = 0; j < sizeof(uperson)/sizeof(UPerson*); ++j)
{

cout << "Input the uperson type (s/t) and his name : ";
cin >> person_type >> name;

if (person_type == ’s’) // No error checking
uperson[j] = new Student(name, CIVL, 4.0);

else if (person_type == ’t’)
uperson[j] = new Teacher(name, CSE, DEAN, "AI");

}

for (int j = 0; j < sizeof(uperson)/sizeof(UPerson*); ++j)
cout << "The uperson #" << j << " is a "

<< typeid(*uperson[j]).name() << endl; // RTTI
}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.62

Example: RTTI typeid() Output

Input the uperson type (s/t) and his name : s Abby

Input the uperson type (s/t) and his name : t Brian

Input the uperson type (s/t) and his name : s Chris

The uperson #0 is a 7Student

The uperson #1 is a 7Teacher

The uperson #2 is a 7Student

The returned type name is implementation dependent.

i.e., different compilers may give different printout.

In this course, we assume the above printout from the g++
compiler.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.63

Overriding and Virtual Functions

When a derived class defines a method with the same name as
a base class method, it overrides the base class method. e.g.

Student::print() overrides UPerson::print()

This is necessary if the behaviour of the base class method is
not good enough for derived classes.

All derived classes should respond to the same request
(print!), but their response varies depending on the object.

The designer of a base class (UPerson) must realize that this
is necessary, and declare its print() a virtual function.

Overriding is not possible if the method is not virtual.

For overriding to work, the prototype of the virtual function in
the derived class must be identical to that of the base class.
To safeguard this, C++11 recommends a new keyword
override in the function declaration in the derived classes.

/* in derived classes: Student or Teacher, etc. */
virtual void print() const override;

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.64

C++11 Keyword: override

#include <iostream> /* File: override.cpp */
using namespace std;

class Base
{

public:
virtual void f(int a) const { cout << a << endl; }

};

class Derived: public Base
{

int x {25};
public:

void f(int) const override;
};

// Don’t repeat the keyword override here
void Derived::f(int b) const { cout << x+b << endl; }

int main() { Derived d; Base& b = d; b.f(5); return 0; }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.65

Virtual Functions vs. Non-Virtual Functions

The designer of the base class must distinguish carefully
between two kinds of methods:

If the method works exactly the same for all derived
classes, it should not be a virtual function.
If the precise behaviour of the method depends on the
object, it should be a virtual function.

However, derived classes have to be careful in implementing
such methods because of the substitution principle. The
“effect” (meaning) of calling the derived class method must
be the “same” as that for the base class method.

Overriding is for specializing a behaviour, not changing the
semantics. E.g., print() should not be a method that does
something completely different.

The compiler can only check that overriding is done
syntactically correctly, not whether the semantics of the
method is preserved.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.66

Overloading vs. Overriding

Overloading

Allows programmers to use functions with the same name, but
different arguments for similar purposes.

The decision on which function to use — overload resolution
— is done by the compiler when the program is compiled.

There is no dynamic binding.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.67

Overloading vs. Overriding ..

Overriding

Allows a derived class to provide a different implementation for a
function declared in the base class.

Overriding is only possible with inheritance and dynamic
binding — without inheritance there is no overriding.

The decision of which method to use is done at the moment
that the method is called.

It only applies to member methods, not global functions.

Question: Can a virtual function declared as protected or private in
the derived classes (while it is declared as public in the base class)?

E.g., for the UPerson example, try to declare the print function as
protected or private in Student or Teacher.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.68

Part VI

Virtual Functions and

Destructors & Constructors

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.69

Example: Destruction with No Substitution

#include <iostream> /* File: concrete-destructors.cpp */
using namespace std;
#include "v-student.h"

int main()
{

UPerson* p = new UPerson("Adam", ECE);
delete p;

Student* s = new Student("Simpson", CSE, 3.8);
s->add_course("COMP1021");
s->add_course("COMP2012");
delete s;

}

delete p will call UPerson’s destructor, and delete s will call
Student’s destructor respectively. Everything works fine.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.70

Example: Destruction with Substitution

#include <iostream> /* File: require-v-destructors.cpp */
using namespace std;
#include "v-student.h"

int main()
{

Student* s = new Student("Simpson", CSE, 3.8);
s->add_course("COMP1021");
s->add_course("COMP2012");

UPerson* p = s;
delete p; // Can we call UPerson’s destructor on a Student?

}

Here p actually points to a Student object.

delete p calls the UPerson’s destructor, and not Student’s
destructor.

The behavior of destructing a derived class object by its base
class destructor is undefined!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.71

Virtual Destructor

The solution is again using dynamic binding, and making the
destructors virtual.

class UPerson /* File: v-uperson2.h */
{

public: virtual ˜UPerson() = default;
...

};

class Student : public UPerson /* File: v-student2.h */
{

public:
virtual ˜Student()
{

for (int j = 0; j < num_courses; ++j)
delete enrolled[j];

}
...

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.72

Virtual Destructor ..

#include <iostream> /* File: v-destructors.cpp */
using namespace std;
#include "v-student2.h" // With virtual destructor

int main()
{

Student* s = new Student("Simpson", CSE, 3.8);
s->add_course("COMP1021");
s->add_course("COMP2012");

UPerson* p = s;
delete p; // Actually call Student’s destructor

}

Now, delete p correctly calls the Student’s destructor if p
points to a Student object.

When a class does not have a virtual destructor, it is a strong
hint that the class is not designed to be used as a base class.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.73

Example: Order of Constructions and Destruction

#include <iostream> /* File: construction-destruction-order.cpp */
using namespace std;

class Base
{

public:
Base() { cout << "Base’s constructor\n"; }
˜Base() { cout << "Base’s destructor\n"; }

};

class Derived : public Base
{

public:
Derived() { cout << "Derived’s constructor\n"; }
˜Derived() { cout << "Derived’s destructor\n"; }

};

int main()
{

Base* p = new Derived;
delete p;

}

Question: What is the output?
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.74

Example: Order of Constructions and Destruction ..

Question: What is the output when virtual destructors are used?

#include <iostream> /* File: construction-v-destruction-order.cpp */
using namespace std;

class Base
{

public:
Base() { cout << "Base’s constructor\n"; }
virtual ˜Base() { cout << "Base’s destructor\n"; }

};

class Derived : public Base
{

public:
Derived() { cout << "Derived’s constructor\n"; }
virtual ˜Derived() { cout << "Derived’s destructor\n"; }

};

int main()
{

Base* p = new Derived;
delete p;

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.75

Example: Calling Virtual Functions in Constructors

#include <iostream> /* File: construct-vf.cpp */
using namespace std;

class Base {
public:

Base() { cout << "Base’s constructor\n"; f(); }
virtual void f() { cout << "Base::f()" << endl; }

};

class Derived : public Base {
public:

Derived() { cout << "Derived’s constructor\n"; }
virtual void f() override { cout << "Derived::f()" << endl; }

};

int main() {
Base* p = new Derived;
cout << "Derived-class object created" << endl;
p->f();

}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.76

Example: Calling Virtual Functions in Constructors ..

The output is:

Base’s constructor

Base::f()

Derived’s constructor

Derived-class object created

Derived::f()

Do not rely on the virtual function mechanism during the
execution of a constructor.

This is not a bug, but necessary — how can the derived
object provide services if it has not been constructed yet?

Similarly, if a virtual function is called inside the base class
destructor, it represents base class’ virtual function: when a
derived class is being deleted, the derived-specific portion has
already been deleted before the base class destructor is called!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.77

Part VII

As Simple as ABC:

Abstract Base Class

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.78

ABC Example: Assets

Let’s design a system for maintaining our assets: stocks, bank
accounts, real estate, cars, yachts, etc.

Each asset has a net worth (monetary value). We would like
to be able to make listings and compute the total net worth.

There are different kinds of assets, and they are all derived
from Personal Asset.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.79

ABC Example: Personal Asset + Bank Acc Asset Classes

class Personal_Asset /* File: personal-asset.h */
{

public:
Personal_Asset(const string& date) : purchase_date(date) { }
void set_purchase_date(const string& d);
virtual double compute_net_worth() const; // Current net worth
virtual bool is_insurable() const; // Can this asset be insured?

private:
string purchase_date;

};

class Bank_Acc_Asset : public Personal_Asset /* File: bank-acc-asset.h */
{

public:
Bank_Acc_Asset(const string& d, double m, double r = 0.0)

: Personal_Asset(d), balance(m), interest_rate(r) { }
virtual double compute_net_worth() const override { return balance; }

private:
double balance;
double interest_rate;

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.80

ABC Example: compute-assets.cpp

There can be other classes of assets such as Car Asset,
Securities Asset, House Asset, etc.

One may compute the total asset value for an array of
different kinds of assets as follows:

/* File: compute-assets.cpp */
double compute_total_worth(const Personal_Asset* asset[], int num_assets)
{

double total_worth = 0.0;

for (int i = 0; i < num_assets; i++)
total_worth += assets[i]->compute_net_worth();

return total_worth;
}

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.81

ABC Example: Personal Asset Class Implementation

Now we have to implement the member functions of the base
class Personal Asset.

How to implement Personal Asset::compute net worth()?

It depends completely on the actual type of asset. There is no
“standard way” of doing it!

/* File: personal-asset.cpp */
Personal_Asset::Personal_Asset(const string& date)

: purchase_date(date) { }

void Personal_Asset::set_purchase_date(const string& date)
{ purchase_date = date; }

double Personal_Asset::compute_net_worth() const
{ return /* What? */ }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.82

ABC Example: How to Implement compute net worth() ?

The truth is: It makes no sense to have objects of type
Personal Asset.

Such an object has only a purchase date, but otherwise no
meaning. It is not a bank account, not a car, not a house —
it is too general to be used.

We cannot implement the compute net worth() method in
the base class Personal Asset as the information needed to
implement it is missing.

However, we don’t want to remove the method because that
would make a polymorphic function like
compute total worth() impossible.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.83

Solution: Abstract Base Class (ABC)

The solution is to make Personal Asset an abstract base class
(ABC), and compute net worth() now becomes a pure virtual
function.

class Personal_Asset /* File: personal-asset-abc.h */
{

public:
Personal_Asset(const string& date) : purchase_date(date) { }
void set_purchase_date(const string& d);
virtual bool is_insurable() const; // Can this asset be insured?

// A pure virtual function to compute the current net worth
virtual double compute_net_worth() const = 0;

private:
string purchase_date;

};

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.84

Abstract Base Class (ABC)

Personal_Asset p_asset("1997/07/01"); // Error
Bank_Acc_Asset b_asset("2000/01/01", 100.0); // Ok

An ABC has two properties:

1 No objects of ABC can be created.

2 Its derived classes must implement the pure virtual
functions, otherwise they will also be ABC’s.

If a derived class, e.g., Securities Asset, does not implement
the pure virtual functions, then

the derived class is also an ABC, and

there cannot be objects of that type,

but it can be used as a base class itself, for instance for
Stocks Asset, Bonds Asset, etc.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.85

Interface Re-use

ABC as an Interface

An abstract base class provides a uniform interface to deal with a
number of different derived classes.

A base class contains what is common about several classes.
If the only thing that is common is the interface, then the
base class is a “pure interface,” called ABC in C++.
We discussed before that code re-use is an advantage of
inheritance.
For ABC’s, we do not re-use code, but create an interface
that can be re-used by its derived classes.
Interfaces are the soul of object-oriented programming. They
are the most effective way of separating the use and
implementation of objects.
The user (of compute total worth()) only knows about the
abstract interface, objects from different derived classes of the
ABC may implement the interface in different ways.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.86

Final Remarks on ABC

A pure virtual function is inherited as a pure virtual function
by a derived class unless it implements the function.

An abstract base class cannot be used

as an argument type that is passed by value

as a function return type that is returned by value

as the type of an explicit conversion

However, pointers and references to an ABC can be declared.

Calling a pure virtual function from the constructor of an ABC
is undefined — don’t do that.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.87

ABC Example: Do and Don’t

#include <string> /* File: can-and-cant.cpp */
using namespace std;

#include "personal-asset-abc.h"
#include "bank-acc-asset.h"

Personal_Asset x("20010/01/01"); // Error: can’t create ABC object
Personal_Asset f1(int x) { /* .. */ } // Error: can’t return ABC object
int f2(Personal_Asset x) { /* .. */ } // Error: can’t CBV with ABC object

Bank_Acc_Asset b("01/01/2000", 0.0); // OK!
Personal_Asset* p_asset_ptr = &b; // OK!
Personal_Asset& p_asset_ref = b; // OK!

Personal_Asset* f3(const Personal_Asset& x) { /* incomplete */ } // OK!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.88

Part VIII

The C++11 Keyword final:

No More Offspring

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.89

A final Class

1 #include <iostream> /* File: final-class-error.cpp */
2 using namespace std;
3

4 class A {};
5 class B: public A {};
6 class C final: public B {};
7 class D: public B {};
8 class E: public C {};
9

10 int main()
11 {
12 A a; B b; C c; D d; E e;
13 return 0;
14 }

final-class-error.cpp:8:7: error: cannot derive from ’final’ base ’C’

in derived type ’E’

class E: public C {};

^

No sub-classes can be derived from a final class.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.90

Example: No PG Student if Student Class is final

1 #include <iostream> /* File: pg-final-error.cpp */
2 using namespace std;
3

4 class UPerson { /* incomplete */ };
5 class Student final : public UPerson { /* incomplete */ };
6 class PG_Student : public Student { /* incomplete */ };
7

8 int main()
9 {

10 UPerson abby("Abby", CBME);
11 Student bob("Bob", CIVL, 3.0);
12 PG_Student matt("Matt", CSE, 3.8);
13 }

pg-final-class-error.cpp:6:7: error: cannot derive from ’final’ base

’Student’ in derived type ’PG_Student’

class PG_Student : public Student { /* incomplete */ };

^~~~~~~~~~

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.91

Example: No PG Student::print if Student::print is final

1 #include <iostream> /* File: final-vfcn-error.cpp */
2 using namespace std;
3

4 class UPerson {
5 public: /* Other data and functions */
6 virtual void print() const { /* incomplete */ }
7 };
8

9 class Student : public UPerson {
10 public: /* Other data and functions */
11 virtual void print() const override final { /* incomplete */ }
12 };
13

14 class PG_Student : public Student {
15 public: /* Other data and functions */
16 virtual void print() const override { /* incomplete */ }
17 };
18

19 int main() { PG_Student jane("Jane", CSE, 4.0); jane.print(); }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.92

Example: No PG Student::print if Student::print is final ..

final-vfcn-error.cpp:16:18: error: virtual function

’virtual void PG_Student::print() const’

virtual void print() const override { /* incomplete */ }

^~~~~

final-vfcn-error.cpp:11:18: error: overriding final function

’virtual void Student::print() const’

virtual void print() const override final { /* incomplete */ }

^~~~~

Can’t override a final virtual function.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.93

Part IX

Further Reading:

Public / Protected / Private Inheritance

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.94

Different Types of Inheritance

So far, we have been dealing with only public inheritance.

class Student: public UPerson { ... }

There are two other kinds of inheritance: protected and
private inheritance.

They control how the inherited members of Student are
accessed by Student’s derived classes (not by the Student
class itself) or global functions.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.95

UPerson Class Again

#ifndef UPERSON_H /* File: uperson.h */
#define UPERSON_H

enum Department { CBME, CIVL, CSE, ECE, IELM, MAE };

class UPerson
{

private:
string name;
Department dept;

protected:
void set_name(string n) { name = n; }
void set_department(Department d) { dept = d; }

public:
UPerson(string n, Department d) : name(n), dept(d) { }
string get_name() const { return name; }
Department get_department() const { return dept; }

};
#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.96

Student Class Again

#ifndef STUDENT_H /* File: student.h */
#define STUDENT_H

#include "uperson.h"
class Course { /* incomplete */ };

class Student : ??? UPerson // ??? = public/protected/private
{

private:
float GPA;
Course* enrolled;
int num_courses;

public:
Student(string n, Department d, float x) :

UPerson(n, d), GPA(x), enrolled(nullptr), num_courses(0) { }
float get_GPA() const { return GPA; }
bool enroll_course(const string& c) { /* incomplete */ };
bool drop_course(const Course& c) { /* incomplete */ };

};
#endif

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.97

Example: Public Inheritance

class Student: public UPerson { ... }

public protected private

get name() set name() name

get department() set department() dept

get GPA() GPA

enroll course() enrolled

drop course() num courses

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.98

Example: Protected Inheritance

class Student: protected UPerson { ... }

public protected private

set name() name

set department() dept

get GPA() get name() GPA

enroll course() get department() enrolled

drop course() num courses

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.99

Example: Private Inheritance

class Student: private UPerson { ... }

public protected private

name

dept

get GPA() GPA

enroll course() enrolled

drop course() num courses

set name()

set department()

get name()

get department()

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.100

Slicing with Public Inheritance Again

Given the following definitions and public inheritance is used:

class Derived : public Base { ... }
Base base;
Derived derived;

The following assignments are fine:

base = derived; // Slicing
Base* b = &derived; // Can’t use derived-class specific members
Base& b = derived; // Can’t use derived-class specific members

The following assignments give compilation errors:

derived = base; // Unless you define such conversion
Derived* d = &base; // No such conversion
Derived& d = base; // No such conversion

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.101

No Slicing for Protected and Private Inheritance

If you use protected/private inheritance, slicing won’t work either.
That is, none of the assignments in the previous page work.

1 #include <string> /* File: no-slicing.cpp */
2 using namespace std;
3

4 // class Student: protected UPerson { ... }
5 #include "protected-student.h"
6

7 int main()
8 {
9 Student ug("UG", ECE, 3.0);

10 UPerson p = ug; // Allowed or not?
11 UPerson* q = &ug; // Allowed or not?
12 UPerson& r = ug; // Allowed or not?
13 return 0;
14 }

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.102

No Slicing for Protected and Private Inheritance ..

no-slicing.cpp:10:17: error: cannot cast ’const Student’ to its

protected base class ’const UPerson’

UPerson p = ug; // Allowed or not?

^

./protected-student.h:7:17: note: declared protected here

class Student : protected UPerson

^~~~~~~~~~~~~~~~~

no-slicing.cpp:11:18: error: cannot cast ’Student’ to its

protected base class ’UPerson’

UPerson* q = &ug; // Allowed or not?

^

no-slicing.cpp:12:18: error: cannot cast ’Student’ to its

protected base class ’UPerson’

UPerson& r = ug; // Allowed or not?

^

Quiz: Why the first error mentions a ’const Student’ instead of a
’Student’?

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.103

Inheritance: Summary

1 Public inheritance preserves the original accessibility of
inherited members:

public ⇒ public
protected ⇒ protected

private ⇒ private

2 Protected inheritance affects only public members and renders
them protected.

public ⇒ protected
protected ⇒ protected

private ⇒ private

3 Private inheritance renders all inherited members private.

public ⇒ private
protected ⇒ private

private ⇒ private

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.104

Inheritance: Summary ..

The various types of inheritance control the highest
accessibility of the inherited member data and functions.

Public inheritance implements the “is-a” relationship.

Private inheritance is similar to “has-a” relationship.

Public inheritance is the most common form of inheritance.

Private and protected inheritance do not allow casting of
objects of derived classes back to the base class.

Question: Does polymorphism (by overriding) work with
protected/private inheritance?

E.g., for the UPerson example, try to derive Student or Teacher
by protected or private inheritance.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.105

