Object-Oriented Programming
and Data Structures

COMP2012: Hashing

Cecia Chan
Brian Mak
Dimitris Papadopoulos

{wulb

—

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology ll
Hong Kong SAR, China

J

1=

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.1

@ How would you find a student
record given just the students
name?

@ How does an electronic dictionary
look up for a word, say,
“computer”?

@ Each machine has an IP address in
the Internet. How will an internet
service look up an IPv6 address?

IP

001:0DB8: :AB00:0123:4567:8901:ABCD

GiovatUnicast 00Tregon ODB8 Loca inemet Regitry 11ry
ross Indcator orl s fr (57

Adk inarnat Servit

Gustomer ABOO subnee 0123:4567:8901:ABCD
The 64-bit Extended Uniqus Identier
(EULBaTM)

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.2

Part |

Hashing

{kccecia, mak, dipapado }@cse.ust.hk

79054025

~ _ 255fbla2

6edbc42?
aef54eb4

COMP2012 (Spring 2022)

General ldea

O 0 N N W AW

@ A hash table is an array of some fixed
_ size, containing all the data items.
data item
Tohn 25000 @ Each item has a key; search is performed
ohil 31250 based on the keys.

@ Each key is mapped into some position in
dave 27500 the array in the range 0 to m — 1, where
mary 28200 m is the array size.

@ The mapping is called hash function.

@ Example applications:

Compilers use hash tables, called symbol tables, to keep track
of declared identifiers in a program.

On-line spell checkers: After hashing the entire dictionary, one
can check each word in constant time and print out the
mis-spelled words in order of their appearance in the
document.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.4

Hash Table

@ Hash table is a data structure that supports: search, insertion,
and deletion (deletion may be unnecessary in some
applications).

@ The implementation of hash tables is called hashing.

@ Hashing is a technique which allows the executions of above
operations in constant time on average.

@ Unlike other data structures such as linked lists or binary
trees, data items are generally not ordered in hash tables.

@ As a consequence, hash tables don't support the following
operations
o find_min and find_max
o finding successor and predecessor

reporting data within a given range

listing out the data in order

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.5

Unrealistic Solution: 1 Slot for 1 Key

)
0
v ; i key satellite data
(universe of keys) 2 ‘\
0e 6e 2
3 ~
>3
/ 4
="
/ 6
/ 7
B
9

=]

@ Universe of keys U is the set of all possible values of the keys.

@ Each position, also called a slot, in the hash table T
corresponds to a key in U.
o T[k] corresponds to a data item with key k.

o If the table contains no data with key k, then T[k] = nil.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.6

Unrealistic Solution ..

@ Insertion, deletion and search all take O(1) constant time.

@ Problem: it wastes too much space if the universe of keys is
large compared with the actual number of data to be stored.

E.g., in HKUST, student IDs are
8-digit integers. So the key
universe has a size of 108, but we
only have ~7000 students (not
counting the alumni)!

RARBAS
HONG KONG LNVERSTY OF
SOENCE AND EONOLOGY

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.7

U
(universe of keys)

hik,)
hiky)

h(ky) = h(ks)

(actual
keys)

h(ks)

m—1

@ Hash function, h maps the universe of keys U into the slots of
a hash table 7[0,1,....m —1].

@ Several keys may be mapped to the same slot.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.8

possible keys hash function hash table
h
{kos ki, - kyj-1} —— {0,1,...,m—1}

Usually, m < |U|.

The keys k; are assumed to be natural numbers.

@ If they are not, they can always be converted or interpreted in
natural numbers.

h(k;) = an integer in [0,..., m — 1] is called the hash value of
ki.

e With hashing, an item of key k is stored in T[h(k)].

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.9

Collision Problem

@ Two keys may be hashed to the same

slot.

° : Can we ensure that any two
distinct keys are hashed to different
slots?

@ No! If N > m, where

e m = size of the hash table, and
o N = number of data

@ Design a good hash function that is

o fast to compute, and
e can minimize the number of collisions

@ Design a method to resolve the collisions when they occur.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.10

Hash Function Design

A simple and reasonable strategy: h(k) = k mod m.
e.g. m=12 k = 100, h(k) = 4
It requires only a single division operation (quite fast).

Certain values of m should be avoided: e.g., if m = 2P, then
h(k) is just the p lowest-order bits of k; thus, the hash
function does not depend on all the bits.

Similarly, if the keys are decimal numbers, m should not be
set to be a power of 10.

It's a good practice to set the table size m to a prime number.

Good values for m: primes not too close to exact powers of 2

o e.g., for a hash table to hold 2,000 numbers, if we don't
mind an average of 3 numbers being hashed to the same
slot, choose m = 701.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.11

How to Deal with String Keys: Method 1

Add up the ASCII values of hello

the characters in the string.

(For simplicity, we only use h"e 1 1 o

their positions in the

alphabets here.) 8+5+12+12+15 52

@ Most hash functions assume that keys are natural numbers. If
keys are not natural numbers, a way must be found to
interpret them as natural numbers.

@ Problems:
o Different permutations of the same set of characters
would have the same hash value.
o If the table size is large, the keys do not distribute well.
o e.g., m = 10,007 (a prime number) and all string keys
have < 8 characters. Since ASCII values < 127, their

numeric keys are in the range between 0 and
127 x 8 =1, 016.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.12

How to Deal with String Keys: Method 2

h(key) = (key[0] + 27-key[1] + 27*-key[2]) mod m
where m is hash table size.

o If the first 3 characters are random and the table size m is
10,007, then it is a reasonably equitable distribution.

@ Problems:

o letters in an English word are not random;

e according to some dictionary, there are only 2,851
different combinations for the first 3 letters of English
words;

o therefore, only at most 28% of the table can actually be
hashed to (if m = 10,007).

{kccecia, mak, dipapado }@cse.ust.hk COMP2012 (Spring 2022)

How to Deal with String Keys: Method 3

h(key)

L1
= (Z 37(L_1_i)-key[i]> mod m

= <37(L1)-key[0] + 3702 key[1] + ... + key[L—1]> mod m

where L is the length of a key.

@ This hash function involves all characters in the key and the
hash values are expected to distribute well.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.14

Part Il

Collision Handling

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022)

Separate Chaining

5

L]
H

@ Keys: the set of
squared numbers
{1,4,9,16,...}.

@ Hash function:
h(k) = k mod 10.

|
1

H H

]

@ Using the idea of
equivalence classes.

O 00 N N Lt A W DN = O
|
i i
EE]

149119 1=

@ The hash table is more than a simple array, but a table of
linked lists.

o Keys having the same hash values are chained on a separate

linked list.
{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.16

Separate Chaining Operations

To insert a key k:
e Compute h(k).

e If T[h(k)] contains a null pointer, the list (or chain) is empty.
Initialize this table entry to point to a linked list with a single
node containing k alone.

e If T[h(k)| points to a non-empty list, add k to the beginning
of the list.

To delete a key k

e Compute h(k) to determine which list to traverse.
@ Search for the key k in the list that T[h(k)| points to.

@ Delete the item with key k if it is found.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.17

Separate Chaining Features

@ If the hash function works well, the number of keys in each
linked list will be a small constant.

Therefore, we expect that each search, insertion, and deletion
can be done in constant time.

@ Disadvantage: Memory allocations and de-allocations in linked
list manipulations slow down the operations.

Advantage: deletion is easy.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.18

Open Addressing

Instead of putting keys of the same hash value into a chain,
open addressing will relocate the key k to be inserted if it
collides with an existing key.

Open addressing needs to determine the sequence of slots to
be examined for key relocation.

Key k may be stored at an entry different from T[h(k)].
Two issues arise:
o what is the relocation scheme?
o how to search for k later?
Three common methods for resolving collisions in open
addressing
© linear probing
@ quadratic probing
© double hashing

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.19

Basic Strategy of Open Addressing

e To insert a key k, compute hg(k).

If T[ho(k)] is empty, insert it there.

@ If collision occurs, probe alternative cell in the following order:
hi(k), ha(k), ..., until an empty cell is found.

hi(k) = (hash(k) + f(i)) mod m, where the function f
determines the collision resolution strategy and f(0) = 0.

Different open addressing methods differ in the definition of
the function f().

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.20

Linear Probing: Insertion

f(i)y =i

hi(k) = (hash(k)+ i) mod m

@ Basic strategy: Table cells are probed sequentially (with
wrap-around) until an empty slot is found.

@ Again let m be the table size and N be the number of items.
@ Let k be the new key to be inserted; compute hash(k).
@ For i =0to m—1, compute j = (hash(k) + i) mod m.
e If T[j] is empty, then we put k there and stop.

@ If no empty slot can be found to put k, the table is full; report
an error.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.21

Linear Probing: Example

@ hash(k) = k mod 10

@ Insert the following keys: 89, 18, 49, 58, 69
e To insert 58, probe T[8], T[9], T[0], T[1]

e To insert 69, probe T[9], T[0], T[1], T[2]

{kccecia, mak, dipapado }@cse.ust.hk COMP2012 (Spring 2022)

Primary Clustering

@ A block of contiguously occupied table entries is a cluster.

@ On average, when we insert a new key k, we may hit the
middle of a cluster. Therefore, the time to insert k would be
proportional to half the size of a cluster.
= the larger the cluster, the slower the performance.

@ Linear probing has the following disadvantages:

o Once h(k) falls into a cluster, this cluster will definitely
grow in size by one. Thus, this may worsen the
performance of insertions in the future.

o If two clusters are separated by only one entry, they may
be merged together by an insertion to that entry.
= cluster size can increase drastically by 1 insertion.

o This means that the performance of insertion can
deteriorate drastically after a single insertion.

o Large clusters are easy targets for collisions.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.23

Quadratic Probing

f(iy = 7°
hi(k) = (hash(k)+i*) mod m

{kccecia, mak, dipapado }@cse.ust.hk COMP2012 (Spring 2022)

Quadratic Probing: Example

o Example:
o hash(k) = k mod 10
o Insert the following keys: 89, 18, 49, 58, 69
o To insert 58, probe T[8], T[9], T[(8 +4) mod 10]
o To insert 69, probe T[9], T[(9 + 1) mod 10],
T[(9 +4) mod 10]

@ Two keys with different home positions will have different
probe sequences. E.g.,
o m =101, h(ky) = 30, h(k2) = 29
o probe sequence for k;: 30,30+ 1,30+4,30+9
o probe sequence for ky: 29,29 + 1,29 + 4,29 + 9

o If the table size is prime, then a new key can always be
inserted if the table is at least half empty (see proof in the
reference book by Weiss).

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.25

Secondary Clustering

@ Keys that hashed to the same home position will probe the
same alternative cells.

@ Simulation results suggest that it generally causes less than an
extra half probe per search.

@ To avoid secondary clustering, the probe sequence need to be
a function of the original key value, not the home position.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.26

Double Hashing

@ To alleviate the problem of clustering, the sequence of probes
for a key should be independent of its primary home position.

@ Thus, use two hash functions: hash(') and hash2().

f(i) = i xhashy(k)
hi(k) = (hash(k) + i x hashy(k)) mod m

e e.g., hasho(k) = R — (k mod R), where R < mand R is
prime.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.27

Double Hashing: Example

@ hi(k) = (hash(k) + i x hashy(k)) mod m

@ m =10, R = 7,hash(k) = k mod 10, hash,(k) =7 — (k mod 7)
@ Insert the following keys: 89, 18, 49, 58, 69

@ 2nd probe for 49: T[(9 +7) mod 10]; 58: T[(8 +5) mod 10];
@ 2nd probe for 69: T[(9+ 1) mod 10]

{kccecia, mak, dipapado }@cse.ust.hk COMP2012 (Spring 2022)

Double Hashing: Choice of hashy()

@ hashy() must never evaluate to zero.

@ For any key k, hashy(k) must be relatively prime to the table
size m. Otherwise, we will only be able to examine a fraction
of the table entries.

e E.g., if hash(k) = 0 and hasho(k) = m/2, then we can only
examine the entries T[0], T[m/2], and nothing else!

@ One solution is to make m prime, and choose R to be a prime
number smaller than m, and set

hashy(k) = R — (k mod R)
@ Quadratic probing, however, does not require the use of a

second hash function, and thus is likely to be simpler and
faster in practice.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.-29

Part Il

Final Remarks

{kccecia, mak, dipapado }@cse.ust.hk COMP2012 (Spring 2022)

Deletion in Open Addressing

@ Actual deletion cannot be performed in open addressing hash
tables, otherwise the probing sequence will be broken.

° : Add an extra field to each table entry, and mark it
as
o EMPTY
o ACTIVE
o DELETED

@ It is also called lazy deletion.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.31

Re-hashing

e Load factor &« = N/m, where N is the number of actually
hashed items in the hash table.

@ The operations in a hash table will become slower drastically
when « becomes large.

e When o becomes large, (roughly) double the table size and
re-hash all data items with a new hash function.

@ Obviously, re-hashing is a very expensive operation.
Fortunately, it usually happens infrequently in a well-designed
hash table.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.32

