
Object-Oriented Programming
and Data Structures

COMP2012: Hashing

Cecia Chan
Brian Mak

Dimitris Papadopoulos

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology

Hong Kong SAR, China

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.1

Motivation

How would you find a student
record given just the students
name?

How does an electronic dictionary
look up for a word, say,
“computer”?

Each machine has an IP address in
the Internet. How will an internet
service look up an IPv6 address?

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.2

Part I

Hashing

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.3

General Idea

data	 item	

A hash table is an array of some fixed
size, containing all the data items.

Each item has a key; search is performed
based on the keys.

Each key is mapped into some position in
the array in the range 0 to m − 1, where
m is the array size.

The mapping is called hash function.

Example applications:

Compilers use hash tables, called symbol tables, to keep track
of declared identifiers in a program.

On-line spell checkers: After hashing the entire dictionary, one
can check each word in constant time and print out the
mis-spelled words in order of their appearance in the
document.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.4

Hash Table

Hash table is a data structure that supports: search, insertion,
and deletion (deletion may be unnecessary in some
applications).

The implementation of hash tables is called hashing.

Hashing is a technique which allows the executions of above
operations in constant time on average.

Unlike other data structures such as linked lists or binary
trees, data items are generally not ordered in hash tables.

As a consequence, hash tables don’t support the following
operations

find min and find max

finding successor and predecessor

reporting data within a given range

listing out the data in order

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.5

Unrealistic Solution: 1 Slot for 1 Key

Universe of keys U is the set of all possible values of the keys.

Each position, also called a slot, in the hash table T
corresponds to a key in U.

T [k] corresponds to a data item with key k .

If the table contains no data with key k , then T [k] = nil.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.6

Unrealistic Solution ..

Insertion, deletion and search all take O(1) constant time.

Problem: it wastes too much space if the universe of keys is
large compared with the actual number of data to be stored.

E.g., in HKUST, student IDs are
8-digit integers. So the key
universe has a size of 108, but we
only have ∼7000 students (not
counting the alumni)!

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.7

Hash Function

Hash function, h maps the universe of keys U into the slots of
a hash table T [0, 1, ...,m − 1].

Several keys may be mapped to the same slot.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.8

Hash Function ..

possible keys hash function hash table

{k0, k1, . . . , k|U|−1}
h

−−−−−−−→ {0, 1, . . . ,m − 1}

Usually, m� |U|.

The keys ki are assumed to be natural numbers.

If they are not, they can always be converted or interpreted in
natural numbers.

h(ki) = an integer in [0, . . . ,m− 1] is called the hash value of
ki .

With hashing, an item of key k is stored in T [h(k)].

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.9

Collision Problem

Two keys may be hashed to the same
slot.

Question: Can we ensure that any two
distinct keys are hashed to different
slots?

No! If N > m, where

m = size of the hash table, and
N = number of data

Solution:

1 Design a good hash function that is

fast to compute, and
can minimize the number of collisions

2 Design a method to resolve the collisions when they occur.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.10

Hash Function Design

A simple and reasonable strategy: h(k) = k mod m.

e.g. m = 12, k = 100, h(k) = 4

It requires only a single division operation (quite fast).

Certain values of m should be avoided: e.g., if m = 2p, then
h(k) is just the p lowest-order bits of k; thus, the hash
function does not depend on all the bits.

Similarly, if the keys are decimal numbers, m should not be
set to be a power of 10.

It’s a good practice to set the table size m to a prime number.

Good values for m: primes not too close to exact powers of 2

e.g., for a hash table to hold 2,000 numbers, if we don’t
mind an average of 3 numbers being hashed to the same
slot, choose m = 701.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.11

How to Deal with String Keys: Method 1

Add up the ASCII values of
the characters in the string.
(For simplicity, we only use
their positions in the
alphabets here.)

Most hash functions assume that keys are natural numbers. If
keys are not natural numbers, a way must be found to
interpret them as natural numbers.

Problems:

Different permutations of the same set of characters
would have the same hash value.

If the table size is large, the keys do not distribute well.

e.g., m = 10,007 (a prime number) and all string keys
have ≤ 8 characters. Since ASCII values ≤ 127, their
numeric keys are in the range between 0 and
127× 8 = 1, 016.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.12

How to Deal with String Keys: Method 2

h(key) =
(
key [0] + 27·key [1] + 272 ·key [2]

)
mod m

where m is hash table size.

If the first 3 characters are random and the table size m is
10,007, then it is a reasonably equitable distribution.

Problems:

letters in an English word are not random;

according to some dictionary, there are only 2,851
different combinations for the first 3 letters of English
words;

therefore, only at most 28% of the table can actually be
hashed to (if m = 10,007).

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.13

How to Deal with String Keys: Method 3

h(key)

=

(
L−1∑
i=0

37(L−1−i) ·key [i]

)
mod m

=

(
37(L−1) ·key [0] + 37(L−2) ·key [1] + . . .+ key [L−1]

)
mod m

where L is the length of a key.

This hash function involves all characters in the key and the
hash values are expected to distribute well.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.14

Part II

Collision Handling

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.15

Separate Chaining

Keys: the set of
squared numbers
{1, 4, 9, 16, . . .}.

Hash function:
h(k) = k mod 10.

Using the idea of
equivalence classes.

The hash table is more than a simple array, but a table of
linked lists.

Keys having the same hash values are chained on a separate
linked list.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.16

Separate Chaining Operations

To insert a key k:

Compute h(k).

If T [h(k)] contains a null pointer, the list (or chain) is empty.
Initialize this table entry to point to a linked list with a single
node containing k alone.

If T [h(k)] points to a non-empty list, add k to the beginning
of the list.

To delete a key k

Compute h(k) to determine which list to traverse.

Search for the key k in the list that T [h(k)] points to.

Delete the item with key k if it is found.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.17

Separate Chaining Features

If the hash function works well, the number of keys in each
linked list will be a small constant.

Therefore, we expect that each search, insertion, and deletion
can be done in constant time.

Disadvantage: Memory allocations and de-allocations in linked
list manipulations slow down the operations.

Advantage: deletion is easy.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.18

Open Addressing

Instead of putting keys of the same hash value into a chain,
open addressing will relocate the key k to be inserted if it
collides with an existing key.

Open addressing needs to determine the sequence of slots to
be examined for key relocation.

Key k may be stored at an entry different from T [h(k)].

Two issues arise:

what is the relocation scheme?

how to search for k later?

Three common methods for resolving collisions in open
addressing

1 linear probing

2 quadratic probing

3 double hashing

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.19

Basic Strategy of Open Addressing

To insert a key k, compute h0(k).

If T [h0(k)] is empty, insert it there.

If collision occurs, probe alternative cell in the following order:
h1(k), h2(k), . . ., until an empty cell is found.

hi (k) = (hash(k) + f (i)) mod m, where the function f
determines the collision resolution strategy and f (0) = 0.

Different open addressing methods differ in the definition of
the function f ().

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.20

Linear Probing: Insertion

f (i) = i

hi(k) = (hash(k) + i) mod m

Basic strategy: Table cells are probed sequentially (with
wrap-around) until an empty slot is found.

Again let m be the table size and N be the number of items.

Let k be the new key to be inserted; compute hash(k).

For i = 0 to m − 1, compute j = (hash(k) + i) mod m.

If T [j] is empty, then we put k there and stop.

If no empty slot can be found to put k , the table is full; report
an error.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.21

Linear Probing: Example

hash(k) = k mod 10

Insert the following keys: 89, 18, 49, 58, 69

To insert 58, probe T [8],T [9],T [0],T [1]

To insert 69, probe T [9],T [0],T [1],T [2]

Table	Index Insert	89 Insert	18 Insert	49 Insert	58 Insert	69

0

1

2

3

4

5

6

7

8

9

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.22

Primary Clustering

A block of contiguously occupied table entries is a cluster.

On average, when we insert a new key k , we may hit the
middle of a cluster. Therefore, the time to insert k would be
proportional to half the size of a cluster.
⇒ the larger the cluster, the slower the performance.

Linear probing has the following disadvantages:

Once h(k) falls into a cluster, this cluster will definitely
grow in size by one. Thus, this may worsen the
performance of insertions in the future.
If two clusters are separated by only one entry, they may
be merged together by an insertion to that entry.
⇒ cluster size can increase drastically by 1 insertion.
This means that the performance of insertion can
deteriorate drastically after a single insertion.
Large clusters are easy targets for collisions.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.23

Quadratic Probing

f (i) = i2

hi(k) = (hash(k) + i2) mod m

Table	Index Insert	89 Insert	18 Insert	49 Insert	58 Insert	69

0

1

2

3

4

5

6

7

8

9

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.24

Quadratic Probing: Example

Example:

hash(k) = k mod 10
Insert the following keys: 89, 18, 49, 58, 69
To insert 58, probe T [8],T [9],T [(8 + 4) mod 10]
To insert 69, probe T [9],T [(9 + 1) mod 10],
T [(9 + 4) mod 10]

Two keys with different home positions will have different
probe sequences. E.g.,

m = 101, h(k1) = 30, h(k2) = 29
probe sequence for k1: 30, 30 + 1, 30 + 4, 30 + 9
probe sequence for k2: 29, 29 + 1, 29 + 4, 29 + 9

If the table size is prime, then a new key can always be
inserted if the table is at least half empty (see proof in the
reference book by Weiss).

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.25

Secondary Clustering

Keys that hashed to the same home position will probe the
same alternative cells.

Simulation results suggest that it generally causes less than an
extra half probe per search.

To avoid secondary clustering, the probe sequence need to be
a function of the original key value, not the home position.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.26

Double Hashing

To alleviate the problem of clustering, the sequence of probes
for a key should be independent of its primary home position.

Thus, use two hash functions: hash() and hash2().

f (i) = i × hash2(k)

hi(k) = (hash(k) + i × hash2(k)) mod m

e.g., hash2(k) = R − (k mod R), where R < m and R is
prime.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.27

Double Hashing: Example

hi (k) = (hash(k) + i × hash2(k)) mod m

m = 10,R = 7,hash(k) = k mod 10, hash2(k) = 7− (k mod 7)

Insert the following keys: 89, 18, 49, 58, 69

2nd probe for 49: T [(9 + 7) mod 10]; 58: T [(8 + 5) mod 10];

2nd probe for 69: T [(9 + 1) mod 10]

Table	Index Insert	89 Insert	18 Insert	49 Insert	58 Insert	69

0

1

2

3

4

5

6

7

8

9

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.28

Double Hashing: Choice of hash2()

hash2() must never evaluate to zero.

For any key k , hash2(k) must be relatively prime to the table
size m. Otherwise, we will only be able to examine a fraction
of the table entries.

E.g., if hash(k) = 0 and hash2(k) = m/2, then we can only
examine the entries T [0],T [m/2], and nothing else!

One solution is to make m prime, and choose R to be a prime
number smaller than m, and set

hash2(k) = R − (k mod R)

Quadratic probing, however, does not require the use of a
second hash function, and thus is likely to be simpler and
faster in practice.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.29

Part III

Final Remarks

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.30

Deletion in Open Addressing

Actual deletion cannot be performed in open addressing hash
tables, otherwise the probing sequence will be broken.

Solution: Add an extra field to each table entry, and mark it
as

EMPTY

ACTIVE

DELETED

It is also called lazy deletion.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.31

Re-hashing

Load factor α = N/m, where N is the number of actually
hashed items in the hash table.

The operations in a hash table will become slower drastically
when α becomes large.

When α becomes large, (roughly) double the table size and
re-hash all data items with a new hash function.

Obviously, re-hashing is a very expensive operation.
Fortunately, it usually happens infrequently in a well-designed
hash table.

{kccecia, mak, dipapado}@cse.ust.hk COMP2012 (Spring 2022) p.32

